
Carnegie	Mellon	

1 

Debugging	

15-213:	Introduc7on	to	Computer	Systems	
Recita7on	12:	Monday,	Nov.	16th,	2015	
	
	



Carnegie	Mellon	

2 

News	
¢  Malloc	Lab	due	Thursday	Nov	19th		



Carnegie	Mellon	

3 

Errors	
¢  Some	errors	are	iden7fied	by	the	driver	

¢  The	error	message	is	straighJorward	in	most	cases	
§  “garbled	byte”	means	part	of	the	payload	returned	to	the	user	has	

been	overwriOen	by	your	allocator	
§  “out	of	memory”	occurs	when	the	memory	is	used	very	

inefficiently,	or	there	are	lost	blocks	



Carnegie	Mellon	

4 

Errors	
¢  But	most	of	the	7mes…	

¢  Do	“gdb	mdriver”	and	“run”	to	find	out	which	line	segfaults	
§  Note	that	a	segfault	occurring	at	line	200	could	actually	be	caused	

by	a	bug	on	line	70	



Carnegie	Mellon	

5 

Segfault	
¢  To	resolve	a	segfault,	it	is	necessary	to	find	the	earliest	

7me	things	went	wrong.	
¢  One	way	to	do	this	is	to	print	the	whole	heap	before/aXer	

relevant	func7ons	
§  Scroll	up	from	the	point	of	segfault	and	find	the	earliest	opera7on	

that	makes	the	heap	look	wrong	
§  Some7mes	this	gives	too	much	informa7on,	not	all	of	which	are	

useful	

¢  The	heap	checker	can	make	this	easier	
§  Checks	viola7on	of	invariants	(corrup7on	of	the	heap)	



Carnegie	Mellon	

6 

Heap	Checker	
¢  Once	you’ve	seOled	on	a	design,	write	the	heap	checker	

that	checks	all	the	invariants	of	the	par7cular	design	
¢  The	checking	should	be	detailed	enough	that	the	heap	

check	passes	if	and	only	if	the	heap	is	truly	well-formed	
¢  Call	the	heap	checker	before/aXer	the	major	opera7ons	

whenever	the	heap	should	be	well-formed	
¢  Define	macros	to	enable/disable	it	conveniently	

§  e.g.	



Carnegie	Mellon	

7 

Invariants	(non-exhaus?ve)	
¢  Block	level:	

§  Header	and	footer	match	
§  Payload	area	is	aligned	

¢  List	level:	
§  Next/prev	pointers	in	consecu7ve	free	blocks	are	consistent	
§  Free	list	contains	no	allocated	blocks	
§  All	free	blocks	are	in	the	free	list	
§  No	con7guous	free	blocks	in	memory	(unless	you	defer	coalescing)	
§  No	cycles	in	the	list	(unless	you	use	circular	lists)	
§  Segregated	list	contains	only	blocks	that	belong	to	the	size	class	

¢  Heap	level:	
§  Prologue/Epilogue	blocks	are	at	specific	loca7ons	(e.g.	heap	boundaries)	

and	have	special	size/alloc	fields	
§  All	blocks	stay	in	between	the	heap	boundaries	

¢  And	your	own	invariants	(e.g.	address	order)	



Carnegie	Mellon	

8 

Hare	and	Tortoise	Algorithm	
¢  Detects	cycles	in	linked	lists	
¢  Set	two	pointers	“hare”	and	“tortoise”	to	the	beginning	of	

the	list	
¢  During	each	itera7on,	move	the	hare	pointer	forward	two	

nodes	and	move	the	tortoise	forward	one	node.	If	they	are	
poin7ng	to	the	same	node	aXer	this,	the	list	has	a	cycle.	

¢  If	the	hare	reaches	the	end	of	the	list,	there	are	no	cycles.		



Carnegie	Mellon	

9 

Other	things	to	watch	for	
¢  Unini7alized	pointers	and/or	memory	
¢  Make	sure	mm_init()	ini7alizes	everything	

§  It	is	called	by	the	driver	between	each	itera7on	of	every	trace	
§  If	something	is	overlooked,	you	might	be	able	to	pass	every	single	

trace	file,	but	the	complete	driver	test	will	fail	



Carnegie	Mellon	

10 

Valgrind	
¢  To	check	for	Illegal	accesses,	unini7alized	values…	



Carnegie	Mellon	

11 

Asking	for	help	
¢  It	can	be	hard	for	the	TAs	to	debug	your	allocator,	because	

this	is	a	more	open-ended	lab	
¢  Before	asking	for	help,	ask	yourself	some	ques7ons:	

§  What	part	of	which	trace	file	triggers	the	error?	
§  Around	the	point	of	the	error,	what	sequence	of	events	do	you	expect?	
§  What	part	of	the	sequence	already	happened?	

¢  If	you	can’t	answer,	it’s	a	good	idea	to	gather	more	
informa7on…	
§  How	can	you	measure	which	step	worked	OK?	
§  prinJ,	breakpoints,	heap	checker…	



Carnegie	Mellon	

12 

Asking	for	help	
¢  Bring	to	us	a	detailed	story,	not	just	a	“plot	summary”	

§  “Alloca7ons	of	size	blah	corrupt	my	heap	aXer	coalescing	the	
previous	block	at	this	line	number...”	is	detailed	

§  “It	segfaults”	is	not	
¢  Most	importantly:	don’t	hesitate	to	come	to	office	hours	if	

you	really	need	help	



Carnegie	Mellon	

13 

Beyond	Debugging:	Error	preven?on	
¢  It	is	hard	to	write	code	that	is	completely	correct	the	first	7me,	

but	certain	prac7ces	can	make	your	code	less	error-prone	
¢  Plan	what	each	func7on	does	before	wri7ng	code	

§  Draw	pictures	when	linked	list	is	involved	
§  Consider	edge	cases	when	the	block	is	at	start/end	of	list	

¢  Write	pseudocode	first	
¢  Document	your	code	as	you	write	it	



Carnegie	Mellon	

14 

Beyond	Debugging:	Version	control	
¢  “I	had	60	u7l	points	just	5	minutes	ago!”	
¢  Save	the	allocator	aXer	each	major	progress	
¢  Most	basic:	copy	files	around	using	the	cp	command	
¢  Alterna7vely:	keep	different	versions	in	separate	c	files,	

and	use	“ln	–s	mm-version-x.c	mm.c”	to	start	using	a	
par7cular	version	

¢  Or	use	git/svn/cvs…	
§  Make	sure	your	repository	is	private	if	you	use	remote	repos	



Carnegie	Mellon	

15 

Op?miza?on	
¢  To	achieve	beOer	performance,	some7mes	you	would	

want	to	tweak	certain	parameters.	
§  Number	of	size	classes,	the	separa7on	of	size	classes,	the	amount	

by	which	the	heap	is	extended	(CHUNKSIZE)…	

¢  It	is	beOer	to	write	modular	and	encapsulated	code	so	that	
changing	the	parameters	only	requires	changing	a	few	lines	
of	code	
§  Use	macros	wisely	



Carnegie	Mellon	

16 

Op?miza?on	
¢  When	you	hit	a	boOleneck,	find	which	part	is	limi7ng	your	

performance	
¢  A	profiler	is	good	for	this	kind	of	job	
¢  To	use	gprof:	

§  Change	the	Makefile	to	add	“-pg”	to	the	compila7on	flag	
§  Run	the	driver.	This	will	generate	a	file	called	gmon.out	
§  Run	“gprof	./mdriver”	to	see	the	result	
§  Don’t	forget	to	change	the	Makefile	back	

	



Carnegie	Mellon	

17 

Final	Words	
¢  Start	now,	if	not	already	
¢  Come	to	office	hours	early	
¢  Write	the	heap	checker	well	
¢  Be	prepared	to	start	over	several	7mes	
¢  Before	handing	in,	check:	

§  Does	the	header	comment	contain	a	detailed	descrip7on	of	your	
approach?	

§  Is	the	indenta7on	correct?	Any	line	over	80	chars?	(go	to	autolab	to	
verify	these)	



Carnegie	Mellon	

18 

Ques?ons?	
¢  Good	luck!	


