
Carnegie Mellon

1	

Malloc	Recita+on	

Ben	Spinelli	
Recita.on	11:	November	9,	2015	

Carnegie Mellon

2	

Agenda	
¢  Macros	/	Inline	func+ons	
¢  Quick	pointer	review	
¢  Malloc	

Carnegie Mellon

3	

Macros	/	Inline	Func+ons	

Carnegie Mellon

4	

Macros	
¢  Pre-compile	+me	
¢  Define	constants:	

§  #define NUM_ENTRIES 100
§  OK	

¢  Define	simple	opera+ons:	
§  #define twice(x) 2*x

§  Not	OK	
§  twice(x+1)	becomes	2*x+1	

§  #define twice(x) (2*(x))
§  OK	

§  Always	wrap	in	parentheses;	it’s	a	naive	search-and-replace!	

Carnegie Mellon

5	

Macros	
¢  Why	macros?	

§  “Faster”	than	func.on	calls	
§  Why?	

§  For	malloc	
§  Quick	access	to	header	informa.on	(payload	size,	valid)	

¢  Drawbacks	
§  Less	expressive	than	func.ons	
§  Arguments	are	not	typechecked,	local	variables	

§  This	can	easily	lead	to	errors	that	are	more	difficult	to	find	

Carnegie Mellon

6	

Inline	Func+ons	
¢  What’s	the	keyword	inline	do?	

§  At	compile-+me	replaces	“func.on	calls”	with	code	

¢  More	efficient	than	a	normal	func+on	call	
§  Less	overhead	–	no	need	to	set	up	stack/func.on	call	
§  Useful	for	func.ons	that	are	

§  Called	frequently	
§  Small,	e.g.,	int	add(int	x,	int	y);	

Carnegie Mellon

7	

Differences	
¢  Macros	done	at	pre-compile	+me	
¢  Inline	func+ons	done	at	compile	+me	

§  Stronger	type	checking	/	Argument	consistency	

¢  Macros	cannot	return	anything	(why	not?)	
¢  Macros	can	have	unintended	side	effects	

§  #define	xsquared(x)	(x*x)	
§  What	happens	when	xsquared(x++)	is	called?	

¢  Hard	to	debug	macros	–	errors	generated	on	expanded	
code,	not	code	that	you	typed		

Carnegie Mellon

8	

Macros	/	Inline	Func+ons	
¢  You	will	likely	use	both	in	malloc	lab	
¢  Macros	are	good	for	small	tasks	

§  Saves	work	in	retyping	tedious	calcula.ons	
§  Can	make	code	easier	to	understand	

§  HEADER(ptr)	versus	doing	the	pointer	arithme.c	

¢  Some	things	are	hard	to	code	in	macros,	so	this	is	where	
inline	func+ons	come	into	play	
§  More	efficient	than	normal	func.on	call	
§  More	expressive	than	macros	

Carnegie Mellon

9	

Pointers:	cas+ng,	arithme+c,	and	
dereferencing	

Carnegie Mellon

10	

Pointer	cas+ng	
¢  Cast	from	

§  <type_a>*	to	<type_b>*	
§  Gives	back	the	same	value	
§  Changes	the	behavior	that	will	happen	when	dereferenced	

§  <type_a>*	to	integer/	unsigned	int	
§  Pointers	are	really	just	8-byte	numbers	
§  Taking	advantage	of	this	is	an	important	part	of	malloc	lab	
§  Be	careful,	though,	as	this	can	easily	lead	to	errors	

§  integer/	unsigned	int	to	<type_a>*	

Carnegie Mellon

11	

Pointer	arithme+c	
¢  The	expression	ptr + a doesn’t	mean	the	same	thing	

as	it	would	if	ptr	were	an	integer.	
¢  Example:	

type_a* pointer = …;
(void *) pointer2 = (void *) (pointer + a);

¢  This	is	really	compu+ng:	
§  pointer2 = pointer + (a * sizeof(type_a))
§  lea (pointer, a, sizeof(type_a)), pointer2;

¢  Pointer	arithme+c	on	void*	is	undefined	

Carnegie Mellon

12	

Pointer	arithme+c	
¢  int * ptr = (int *)0x12341230;

int * ptr2 = ptr + 1;

¢  char * ptr = (char *)0x12341230;
char * ptr2 = ptr + 1;

¢  int * ptr = (int *)0x12341230;
int * ptr2 = ((int *) (((char *) ptr) + 1));

¢  char * ptr = (char *)0x12341230;
void * ptr2 = ptr + 1;

¢  char * ptr = (int *)0x12341230;
void * ptr2 = ptr + 1;

Carnegie Mellon

13	

Pointer	arithme+c	
¢  int * ptr = (int *)0x12341230;

int * ptr2 = ptr + 1; //ptr2 is 0x12341234

¢  char * ptr = (char *)0x12341230;
char * ptr2 = ptr + 1; //ptr2 is 0x12341231

¢  int * ptr = (int *)0x12341230;
int * ptr2 = ((int *) (((char *) ptr) + 1));
//ptr2 is 0x12341231

¢  char * ptr = (char *)0x12341230;

void * ptr2 = ptr + 1; //ptr2 is 0x12341231

¢  char * ptr = (int *)0x12341230;
void * ptr2 = ptr + 1; //ptr2 is still 0x12341231

Carnegie Mellon

14	

More	pointer	arithme+c	

¢  int ** ptr = (int **)0x12341230;
int * ptr2 = (int *) (ptr + 1);

¢  char ** ptr = (char **)0x12341230;

short * ptr2 = (short *) (ptr + 1);

¢  int * ptr = (int *)0x12341230;
void * ptr2 = &ptr + 1;

¢  int * ptr = (int *)0x12341230;
void * ptr2 = ((void *) (*ptr + 1));

¢  This	is	on	a	64-bit	machine!	

Carnegie Mellon

15	

More	pointer	arithme+c	

¢  int ** ptr = (int **)0x12341230;
int * ptr2 = (int *) (ptr + 1); //ptr2 = 0x12341238

¢  char ** ptr = (char **)0x12341230;

short * ptr2 = (short *) (ptr + 1);
//ptr2 = 0x12341238

¢  int * ptr = (int *)0x12341230;
void * ptr2 = &ptr + 1;//ptr2 = ??
//ptr2 is actually 8 bytes higher than the address of
the variable ptr, which is somewhere on the stack

¢  int * ptr = (int *)0x12341230;
void * ptr2 = ((void *) (*ptr + 1)); //ptr2 = ??
//ptr2 is one plus the value at 0x12341230
§  (so undefined, but it probably segfaults)

	

Carnegie Mellon

16	

Pointer	dereferencing	
¢  Basics	

§  It	must	be	a	POINTER	type	(or	cast	to	one)	at	the	.me	of	
dereference	

§  Cannot	dereference	expressions	with	type	void*
§  Dereferencing	a	t*	evaluates	to	a	value	with	type	t

Carnegie Mellon

17	

Pointer	dereferencing	
¢  What	gets	“returned?”	
	int * ptr1 = malloc(sizeof(int));
*ptr1 = 0xdeadbeef;

 int val1 = *ptr1;
 int val2 = (int) *((char *) ptr1);

	
	What	are	val1	and	val2?	

Carnegie Mellon

18	

Pointer	dereferencing	
¢  What	gets	“returned?”	
	int * ptr1 = malloc(sizeof(int));
*ptr1 = 0xdeadbeef;

 int val1 = *ptr1;
 int val2 = (int) *((char *) ptr1);

	
// val1 = 0xdeadbeef;
// val2 = 0xffffffef;
What	happened??	

Carnegie Mellon

19	

Malloc	

Carnegie Mellon

20	

Malloc	basics	
¢  What	is	dynamic	memory	alloca+on?	

¢  Terms	you	will	need	to	know	
§  malloc/	calloc	/	realloc	
§  free	
§  sbrk	
§  payload	
§  fragmenta.on	(internal	vs.	external)	
§  coalescing	

§  Bi-direc.onal	
§  Immediate	vs.	Deferred	

Carnegie Mellon

21	

Carnegie Mellon

22	

Fragmenta+on	
¢  Internal	fragmenta+on	

§  Result	of	payload	being	smaller	than	block	size.	
§  void * m1 = malloc(3); void * m1 = malloc(3);
§  m1,m2 both	have	to	be	aligned	to	8	bytes…	

¢  External	fragmenta+on

Carnegie Mellon

23	

Carnegie Mellon

24	

Implementa+on	Hurdles	
¢  How	do	we	know	where	the	blocks	are?	
¢  How	do	we	know	how	big	the	blocks	are?	
¢  How	do	we	know	which	blocks	are	free?	
¢  Remember:	can’t	buffer	calls	to	malloc	and	free…	must	

deal	with	them	real-+me.	
¢  Remember:	calls	to	free	only	takes	a	pointer,	not	a	

pointer	and	a	size.	
¢  Solu+on:	Need	a	data	structure	to	store	informa+on	on	

the	“blocks”	
§  Where	do	I	keep	this	data	structure?	
§  We	can’t	allocate	a	space	for	it,	that’s	what	we	are	wri.ng!	

Carnegie Mellon

25	

The	data	structure	
¢  Requirements:	

§  The	data	structure	needs	to	tell	us	where	the	blocks	are,	how	big	
they	are,	and	whether	they’re	free	

§  We	need	to	be	able	to	CHANGE	the	data	structure	during	calls	to	
malloc	and	free	

§  We	need	to	be	able	to	find	the	next	free	block	that	is	“a	good	fit	
for”	a	given	payload	

§  We	need	to	be	able	to	quickly	mark	a	block	as	free/allocated	
§  We	need	to	be	able	to	detect	when	we’re	out	of	blocks.	

§  What	do	we	do	when	we’re	out	of	blocks?	

Carnegie Mellon

26	

The	data	structure	
¢  It	would	be	convenient	if	it	worked	like:	

 malloc_struct malloc_data_structure;
 …
ptr = malloc(100, &malloc_data_structure);

 …

 free(ptr, &malloc_data_structure);

 …

¢  Instead	all	we	have	is	the	memory	we’re	giving	out.	
§  All	of	it	doesn’t	have	to	be	payload!	We	can	use	some	of	that	for	

our	data	structure.	

Carnegie Mellon

27	

The	data	structure	
¢  The	data	structure	IS	your	memory!	
¢  A	start:	

§  <h1>	<pl1>	<h2>	<pl2>	<h3>	<pl3>	
§  What	goes	in	the	header?	

§  That’s	your	job!	
§  Lets	say	somebody	calls	free(p2),	how	can	I	coalesce?	

§  Maybe	you	need	a	footer?	Maybe	not?	

Carnegie Mellon

28	

The	data	structure	
¢  Common	types	

§  Implicit	List	
§  Root	->	block1	->	block2	->	block3	->	…	

§  Explicit	List	
§  Root	->	free	block	1	->	free	block	2	->	free	block	3	->	…	

§  Segregated	List	
§  Small-malloc	root	->	free	small	block	1	->	free	small	block	2	->	…	
§  Medium-malloc	root	->	free	medium	block	1	->	…	
§  Large-malloc	root	->	free	block	chunk1	->	…	

Carnegie Mellon

29	

Implicit	List	
¢  From	the	root,	can	traverse	across	blocks	using	headers	
¢  Can	find	a	free	block	this	way	
¢  Can	take	a	while	to	find	a	free	block	

§  How	would	you	know	when	you	have	to	call	sbrk?	

Carnegie Mellon

30	

Explicit	List	
¢  Improvement	over	implicit	list	
¢  From	a	root,	keep	track	of	all	free	blocks	in	a	(doubly)	

linked	list	
§  Remember	a	doubly	linked	list	has	pointers	to	next	and	previous	

¢  When	malloc	is	called,	can	now	find	a	free	block	quickly	
§  What	happens	if	the	list	is	a	bunch	of	small	free	blocks	but	we	want	

a	really	big	one?	
§  How	can	we	speed	this	up?	

Carnegie Mellon

31	

Segregated	List	
¢  An	op+miza+on	for	explicit	lists	
¢  Can	be	thought	of	as	mul+ple	explicit	lists	

§  What	should	we	group	by?	

¢  Grouped	by	size	–	let’s	us	quickly	find	a	block	of	the	size	
we	want	

¢  What	size/number	of	buckets	should	we	use?	
§  This	is	up	to	you	to	decide	

Carnegie Mellon

32	

Design	Considera+ons	
¢  I	found	a	chunk	that	fits	the	necessary	payload…	should	I	

look	for	a	beder	fit	or	not?	(First	fit	vs.	Best	fit)	
¢  Splieng	a	free	block:	
 void* ptr = malloc(200);
 free(ptr);
 ptr = malloc(50); //use same space, then “mark” remaining
bytes as free

 void* ptr = malloc(200);
 free(ptr);
 ptr = malloc(192);//use same space, then “mark” remaining
bytes as free??

Carnegie Mellon

33	

Design	Considera+ons	
¢  Free	blocks:	address-ordered	or	LIFO	

§  What’s	the	difference?	
§  Pros	and	cons?	

¢  Coalescing	
§  When	do	you	coalesce?	

¢  You	will	need	to	be	using	an	explicit	list	at	minimum	score	
points	
§  But	don’t	try	to	go	straight	to	your	final	design,	build	it	up	

itera.vely.	

Carnegie Mellon

34	

Heap	Checker	
¢  Part	of	the	assignment	is	wri+ng	a	heap	checker	

§  This	is	here	to	help	you.	
§  Write	the	heap	checker	as	you	go,	don’t	think	of	it	as	something	to	do	

at	the	end	
§  A	good	heap	checker	will	make	debugging	much,	much	easier	

¢  Heap	checker	+ps	
§  Heap	checker	should	run	silently	un.l	it	finds	an	error	

§  Otherwise	you	will	get	more	output	than	is	useful	
§  You	might	find	it	useful	to	add	a	“verbose”	flag,	however	

§  Consider	using	a	macro	to	turn	the	heap	checker	on	and	off	
§  This	way	you	don’t	have	to	edit	all	of	the	places	you	call	it	

§  There	is	a	built-in	macro	called	__LINE__	that	gets	replaced	with	
the	line	number	it’s	on	
§  You	can	use	this	to	make	the	heap	checker	tell	you	where	it	failed	

Carnegie Mellon

35	

Demo	
¢  Running	Traces	
¢  Heap	checker	
¢  Using	gprof	to	profile	

