
Carnegie Mellon 

1 

Virtual	Memory	
	

15-213:	Introduc0on	to	Computer	Systems	
Recita0on	10:	Nov.	2,	2015	
	
Karthic	Palaniappan	
	



Carnegie Mellon 

2 

Agenda 	 		
¢  Shell	Lab	FAQs	and	I/O	
¢  Malloc	Lab	Preview	
¢  Virtual	Memory	Concepts	
¢  Address	TranslaCon	

§  Basic	
§  TLB	
§  MulClevel	



Carnegie Mellon 

3 

Updates 	 		
¢  Shell	Lab	is	due	Tuesday	(tomorrow),	11:59	p.m.	
¢  Malloc	Lab	is	out	Tuesday	(tomorrow),	11:59	p.m.	

§  Due	Thursday,	Nov.	19	
§  Start	early!!	
§  “The	total	0me	you	spend	designing	and	debugging	can	easily	

eclipse	the	0me	you	spend	coding.”	



Carnegie Mellon 

4 

Shell	Lab	FAQ	
¢  “The	traces	behave	differently	from	command-line	

input!”	
§  Some	people	are	confused	to	find	/bin/echo	on	their	jobs	list	aPer	

running	some	trace	files.	
§  Some	traces	(e.g.	trace05)	print	what	they’re	running	before	they	

run	them.	They	do	this	by	using	/bin/echo.	
§  So	if	you	see	a	mysterious	/bin/echo	show	up	on	your	jobs	list,	you	

shouldn’t	wonder	why	it	got	on	your	jobs	list,	you	should	wonder	
why	it	never	got	deleted.	

§  Moral	of	the	story:	open	the	trace	file	and	see	what	it	does!	



Carnegie Mellon 

5 

Shell	Lab	FAQ	
¢  Sigsuspend???	

§  You	can	only	use	waitpid()	once,	but	there	are	probably	two	places	
you	probably	need	to	reap	children	(one	for	foreground	jobs,	one	
for	background	jobs).	

§  Tempta0on:	use	waitpid()	for	background	jobs;	use	sleep()	or	a	
0ght	loop	(i.e.,	while(1)	{}).	

§  Correct	solu0on:	use	sigsuspend	to	block	your	process	un0l	a	signal	
arrives.	

¢  int	sigsuspend(const	sigset_t	*mask)	
§  Temporarily	replaces	the	process’s	signal	mask	with	mask,	which	

should	be	the	signals	you	don’t	want	to	be	interrupted	by.	
§  sigsuspend	will	return	aPer	an	unblocked	signal	is	received	and	

its	handler	run.	When	it	returns,	it	automa0cally	reverts	the	
process	signal	mask	to	its	old	value.	



Carnegie Mellon 

6 

Shell	Lab	FAQ:	sigsuspend	example	
int	main()	{	

	sigset_t	waitmask,	newmask,	oldmask;	
	

	/*	set	waitmask	with	everything	except	SIGINT	*/	
	sigfillset(&waitmask);	
	sigdelset(&waitmask,	SIGINT);	

	
	/*	set	newmask	with	only	SIGINT	*/	
	sigemptyset(&newmask);	
	sigaddset(&newmask,	SIGINT);	

	
	if	(sigprocmask(SIG_BLOCK,	&newmask,	&oldmask)	<	0)	//oldmask	now	stores	prev	mask	
	 	unix_error("SIG_BLOCK	error");	
	/*	CRITICAL	REGION	OF	CODE	(SIGINT	blocked)	*/	
	/*	pause,	allowing	ONLY	SIGINT	*/	
	if	(sigsuspend(&waitmask)	!=	-1)	
	 	unix_error("sigsuspend	error");	

	
	/*	RETURN	FROM	SIGSUSPEND	(returns	to	signal	state	from	before	sigsuspend)	*/	
	/*	Reset	signal	mask	which	unblocks	SIGINT	*/	
	if	(sigprocmask(SIG_SETMASK,	&oldmask,	NULL)	<	0)	
	 	unix_error("SIG_SETMASK	error");	

}	



Carnegie Mellon 

7 

System	Calls	and	Error	Handling	
¢  System	Call	Error	Handling		
¢  Always	handle	errors	for	every	system	call	–	#include	

<errno.h>	
§  	Failed	system	calls	almost	always	return	-1	
§  Global	integer	error	number:	errno	
§  Ge\ng	error	descrip0on:	strerror(errno)		

¢  We	deduct	style	points	for	not	handling	system	call	errors	
¢  Do	not	lose	style	points	here!	
¢  Easy	soluCon	:	Use	wrappers	from	CSAPP	website	

(Fork(),Execve(),Sigprocmask()…)		



Carnegie Mellon 

8 

I/O	Basics	
¢  Four	basic	operaCons:		

§  open		
§  close	
§  read	
§  write		

¢  What’s	a	file	descriptor?	
§  Returned	by	open.		
§  int	fd	=	open(“/path/to/file”,	O_RDONLY);		
§  fd	is	some	posi0ve	value	or	-1	to	denote	error		

¢  Every	process	starts	with	3	open	file	descriptors	that	can	
be	accessed	macros	like	STDOUT_FILENO		
§  0		-		STDIN		
§  1		-		STDOUT	
§  2		-	STDERR		



Carnegie Mellon 

9 

How	the	Unix	Kernel	Represents	Open	Files	
¢  Two	descriptors	referencing	two	disCnct	open	files.	

Descriptor	1	(stdout)	points	to	terminal,	and	descriptor	4	
points	to	open	disk	file	

fd	0	
fd	1	
fd	2	
fd	3	
fd	4	

Descriptor	table	
[one	table	per	process]	

Open	file	table		
[shared	by	all	processes]	

v-node	table	
[shared	by	all	processes]	

File	pos	
refcnt=1 ...	

File	pos	
refcnt=1 ...	

stderr 
stdout 
stdin File	access	

...	

File	size	
File	type	

File	access	

...	

File	size	
File	type	

File	A	(terminal)	

File	B	(disk)	

Info	in		
stat	
struct	



Carnegie Mellon 

10 

File	Sharing	
¢  Two	disCnct	descriptors	sharing	the	same	disk	file	through	

two	disCnct	open	file	table	entries	
§  E.g.,	Calling	open twice	with	the	same	filename argument 

fd	0	
fd	1	
fd	2	
fd	3	
fd	4	

Descriptor	table	
[one	table	per	process]	

Open	file	table		
[shared	by	all	processes]	

v-node	table	
[shared	by	all	processes]	

File	pos	
refcnt=1 ...	

File	pos	
refcnt=1 ...	

stderr 
stdout 
stdin File	access	

...	

File	size	
File	type	

File	A	(disk)	

File	B	(disk)	



Carnegie Mellon 

11 

How	Processes	Share	Files:	fork 
¢  A	child	process	inherits	its	parent’s	open	files 

§  Note:	situa0on	unchanged	by	exec func0ons	(use	fcntl	to	change)	
¢  Before	fork	call:	

fd	0	
fd	1	
fd	2	
fd	3	
fd	4	

Descriptor	table	
[one	table	per	process]	

Open	file	table		
[shared	by	all	processes]	

v-node	table	
[shared	by	all	processes]	

File	pos	
refcnt=1 ...	

File	pos	
refcnt=1 ...	

stderr 
stdout 
stdin File	access	

...	

File	size	
File	type	

File	access	

...	

File	size	
File	type	

File	A	(terminal)	

File	B	(disk)	



Carnegie Mellon 

12 

How	Processes	Share	Files:	fork 
¢  A	child	process	inherits	its	parent’s	open	files	
¢  A/er	fork:	

§  Child’s	table	same	as	parent’s,	and	+1	to	each	refcnt	

fd	0	
fd	1	
fd	2	
fd	3	
fd	4	

Descriptor	table	
[one	table	per	process]	

Open	file	table		
[shared	by	all	processes]	

v-node	table	
[shared	by	all	processes]	

File	pos	
refcnt=2 ...	

File	pos	
refcnt=2 ...	

File	access	

...	

File	size	
File	type	

File	access	

...	

File	size	
File	type	

File	A	(terminal)	

File	B	(disk)	
fd	0	
fd	1	
fd	2	
fd	3	
fd	4	

Parent	

Child	



Carnegie Mellon 

13 

I/O	RedirecCon	
¢  QuesCon:	How	does	a	shell	implement	I/O	redirecCon?	

linux> ls > foo.txt 

¢  Answer:	By	calling	the	dup2(oldfd, newfd) funcCon	
§  Copies	(per-process)	descriptor	table	entry	oldfd		to	entry	newfd 

a 

b 

fd	0	
fd	1	
fd	2	
fd	3	
fd	4	

Descriptor	table	
before	dup2(4,1) 

b 

b 

fd	0	
fd	1	
fd	2	
fd	3	
fd	4	

Descriptor	table	
a/er	dup2(4,1) 



Carnegie Mellon 

14 

I/O	RedirecCon	Example	
¢  	Step	#1:	open	file	to	which	stdout	should	be	redirected	

§  Happens	in	child	execu0ng	shell	code,	before	exec 

fd	0	
fd	1	
fd	2	
fd	3	
fd	4	

Descriptor	table	
[one	table	per	process]	

Open	file	table		
[shared	by	all	processes]	

v-node	table	
[shared	by	all	processes]	

File	pos	
refcnt=1 ...	

stderr 
stdout 
stdin File	access	

...	

File	size	
File	type	

File	A	

File	pos	
refcnt=1 ...	

File	access	

...	

File	size	
File	type	

File	B	



Carnegie Mellon 

15 

I/O	RedirecCon	Example	(cont.)	
¢  Step	#2:	call	dup2(4,1) 

§  cause	fd=1	(stdout)	to	refer	to	disk	file	pointed	at	by	fd=4 

fd	0	
fd	1	
fd	2	
fd	3	
fd	4	

Descriptor	table	
[one	table	per	process]	

Open	file	table		
[shared	by	all	processes]	

v-node	table	
[shared	by	all	processes]	

File	pos	
refcnt=0 ...	

File	pos	
refcnt=2 ...	

stderr 
stdout 
stdin File	access	

...	

File	size	
File	type	

File	access	

...	

File	size	
File	type	

File	A	

File	B	



Carnegie Mellon 

16 

Malloc	Lab	Sneak	Preview	
¢  You	will	write	your	own	dynamic	storage	allocator	–	i.e.,	

your	own	malloc,	free,	realloc,	calloc.	
¢  This	week	in	class,	you	will	learn	about	different	ways	to	

keep	track	of	free	and	allocated	blocks	of	memory.	
§  Implicit	linked	list	of	blocks.	
§  Explicit	linked	list	of	free	blocks.	
§  Segregated	lists	of	different	size	free	blocks.	

¢  Other	design	decisions:	
§  How	will	you	look	for	free	blocks?	(First	fit,	next	fit,	best	fit…)	
§  Should	the	linked	lists	be	doubly	linked?	
§  When	do	you	coalesce	blocks?	

¢  This	is	exactly	what	you’ll	do	in	this	lab,	so	pay	lots	of	
anenCon	in	class.	J	



Carnegie Mellon 

17 

Malloc	Lab	Sneak	Preview	
¢  If	you	haven’t	been	using	version	control	so	far,	this	is	a	

good	Cme	to	start.	
¢  Workflow:	

§  Implement	indirect	linked	lists.	Make	sure	it	works.	
§  Implement	explicit	linked	lists.	Make	sure	it	s0ll	works.	
§  Implement	segregated	lists.	Make	sure	it	s0ll	works.	
§  You	WILL	break	things	and	need	to	revert.	

¢  Barebones	guide	to	using	git	on	the	Shark	Machines:	
§  git	init	starts	a	local	repository.	
§  git	add	foo.c	adds	foo.c	to	that	repository.	
§  git	commit	-a	–m	‘Describe	changes	here’	updates	

your	repository	with	the	current	state	of	all	files	you’ve	added.		



Carnegie Mellon 

18 

Agenda 	 		
¢  Shell	Lab	FAQs	
¢  Malloc	Lab	Sneak	Preview	
¢  Virtual	Memory	Concepts	
¢  Address	TranslaCon	

§  Basic	
§  TLB	
§  Mul0level	



Carnegie Mellon 

19 

Virtual	Memory	Concepts	
¢  We’ve	been	viewing	

memory	as	a	linear	
array.	

¢  But	wait!	If	you’re	
running	5	processes	
with	stacks	at	
0xC0000000,	don’t	
their	addresses	
conflict?	

¢  Nope!	Each	process	has	
its	own	address	space.	

¢  How???	 Unused	

Kernel	virtual	memory	

Memory-mapped	region	for	
shared	libraries	

Run-Cme	heap	
(created	by	malloc)	

User	stack	
(created	at	runCme)	

%esp		
(stack		
pointer)	

Memory	
invisible	to	
user	code	

brk 

0xC0000000 

0x08048000 

0x40000000 

Read/write	segment	
(.data,	.bss)	

Read-only	segment	
(.init,	.text,	.rodata)	

Loaded	from	
the	executable	
file	



Carnegie Mellon 

20 

Virtual	memory	concepts	
¢  We	define	a	mapping	

from	the	virtual	
address	used	by	the	
process	to	the	actual	
physical	address	of	
the	data	in	memory.	

		
	
	
	
Image:	hlp://en.wikipedia.org/wiki/

File:Virtual_address_space_and_p
hysical_address_space_rela0onshi
p.svg	



Carnegie Mellon 

21 

Virtual	memory	concepts	
	This	explains	why	two	different	processes	can	use	the	same	
address.	It	also	lets	them	share	data	and	protects	their	
data	from	illegal	accesses.	Hooray	for	virtual	memory!	

N-1	 M-1	

Virtual	
Address	
Space	for	
Process	1:	

Physical		
Address		
Space	
(DRAM)	

0	

N-1	
(e.g.,	read-only		
library	code)	

Virtual	
Address	
Space	for	
Process	2:	

VP	1	
VP	2	
...	

0	

VP	1	
VP	2	
...	

PP	2	

PP	6	

PP	8	

...	

0	Address		
translaBon 



Carnegie Mellon 

22 

Virtual	memory	concepts	
¢  Page	table	

§  Lets	us	look	up	the	physical	address	corresponding	to	any	virtual	
address.	(Array	of	physical	addresses,	indexed	by	virtual	address.)	

¢  TLB	(TranslaCon	Lookaside	Buffer)	
§  A	special	0ny	cache	just	for	page	table	entries.	
§  Speeds	up	transla0on.	

¢  MulC-level	page	tables	
§  The	address	space	is	oPen	sparse.	
§  Use	page	directory	to	map	large	chunks	of	memory	to	a	page	table.	
§  Mark	large	unmapped	regions	as	non-present	in	page	directory	

instead	of	storing	page	tables	full	of	invalid	entries.	



Carnegie Mellon 

23 

Agenda 	 		
¢  Shell	Lab	FAQs	
¢  Malloc	Lab	Sneak	Preview	
¢  Virtual	Memory	Concepts	
¢  Address	TranslaCon	

§  Basic	
§  TLB	
§  Mul0level	



Carnegie Mellon 

24 

VM	Address	TranslaCon	
¢  Virtual	Address	Space	

§  V	=	{0,	1,	…,	N–1}	
§  There	are	N	possible	virtual	addresses.	
§  Virtual	addresses	are	n	bits	long;	2n	=	N.	

¢  Physical	Address	Space	
§  P	=	{0,	1,	…,	M–1}	
§  There	are	M	possible	physical	addresses.	
§  Virtual	addresses	are	m	bits	long;	2m	=	M.	

¢  Memory	is	grouped	into	“pages.”	
§  Page	size	is	P	bytes.	
§  The	address	offset	is	p	bytes;	2p	=	P.	
§  Since	the	virtual	offset	(VPO)	and	physical	offset	(PPO)	are	the	same,	the	

offset	doesn’t	need	to	be	translated.	



Carnegie Mellon 

25 

VM	Address	TranslaCon	

Virtual	page	number	(VPN)	 Virtual	page	offset	(VPO)	

Physical	page	number	(PPN)	 Physical	page	offset	(PPO)	

Virtual	address	

Physical	address	

Valid	 Physical	page	number	(PPN)	

Page	table		
base	register	

(PTBR)	

Page	table		Page	table	address		
for	process	

Valid	bit	=	0:	
page	not	in	memory	

(page	fault)	

0	p-1	p	n-1	

0	p-1	p	m-1	



Carnegie Mellon 

26 

VM	Address	TranslaCon	
¢  Addressing	

§  14-bit	virtual	addresses	
§  12-bit	physical	address	
§  Page	size	=	64	bytes	
13	 12	 11	 10	 9	 8	 7	 6	 5	 4	 3	 2	 1	 0	

11	 10	 9	 8	 7	 6	 5	 4	 3	 2	 1	 0	

VPO	

PPO	PPN	

VPN	

Virtual	Page	Number	 Virtual	Page	Offset	

Physical	Page	Number	 Physical	Page	Offset	



Carnegie Mellon 

27 

Example	1:	Address	TranslaCon	
¢  Pages	are	64	bytes.	How	many	bits	is	the	offset?	
¢  Find	0x03D4.	

¢  VPN:	_____	
¢  PPN:	______	
¢  Physical	address:	

___________	

VPO	VPN	

13	 12	 11	 10	 9	 8	 7	 6	 5	 4	 3	 2	 1	 0	

1	0D	0F	
1	11	0E	
1	2D	0D	
0	–	0C	
0	–	0B	
1	09	0A	
1	17	09	
1	13	08	

Valid	PPN	VPN	

0	–	07	
0	–	06	
1	16	05	
0	–	04	
1	02	03	
1	33	02	
0	–	01	
1	28	00	

Valid	PPN	VPN	

PPO	PPN	



Carnegie Mellon 

28 

Example	1:	Address	TranslaCon	
¢  Pages	are	64	bytes.	How	many	bits	is	the	offset?	
¢  Find	0x03D4.	

¢  VPN:	_____	
¢  PPN:	______	
¢  Physical	address:	

___________	

VPO	VPN	

13	 12	 11	 10	 9	 8	 7	 6	 5	 4	 3	 2	 1	 0	

0	0	1	0	1	0	1	1	1	1	0	0	0	0	

1	0D	0F	
1	11	0E	
1	2D	0D	
0	–	0C	
0	–	0B	
1	09	0A	
1	17	09	
1	13	08	

Valid	PPN	VPN	

0	–	07	
0	–	06	
1	16	05	
0	–	04	
1	02	03	
1	33	02	
0	–	01	
1	28	00	

Valid	PPN	VPN	
0x0F	
0x0D	

0x0354	

PPO	PPN	

0	0	0	 1	1	0	1	0	1	0	 1	0	

log2	64	=	6	



Carnegie Mellon 

29 

Agenda 	 		
¢  Shell	Lab	FAQs	
¢  Malloc	Lab	Sneak	Preview	
¢  Virtual	Memory	Concepts	
¢  Address	TranslaCon	

§  Basic	
§  TLB	
§  Mul0level	



Carnegie Mellon 

30 

VM	Address	TranslaCon		with	TLB	
¢  That’s	nice	and	simple,	but	it	doubles	memory	usage.	

§  One	memory	access	to	look	in	the	page	table.	
§  One	memory	access	of	the	actual	memory	we’re	looking	for.	

¢  SoluCon:	
§  Cache	the	most	frequently	used	page	table	entries	in	the	TLB.	
§  To	look	up	a	virtual	address	in	the	TLB,	split	up	the	VPN	(not	the	

whole	virtual	address!)	into	a	TLB	index	and	a	TLB	tag.	

5	

MMU	 Cache/	
Memory	

PA	

Data	

CPU	 VA	

CPU	
Chip	 PTE	

1	

2	

4	

TLB	

VPN	 3	



Carnegie Mellon 

31 

Example	2:	Address	TranslaCon	with	TLB	
1	MB	of	virtual	memory 	 	4	KB	page	size	
256	KB	of	physical	memory 	TLB:	8	entries,	2-way	set	associa0ve	

¢  How	many	bits	are	needed	to	represent	the	virtual	
address	space?	

¢  How	many	bits	are	needed	to	represent	the	physical	
address	space?	

¢  How	many	bits	are	needed	to	represent	the	offset?	
	

¢  How	many	bits	are	needed	to	represent	VPN?	
¢  How	many	bits	are	in	the	TLB	index?	
¢  How	many	bits	are	in	the	TLB	tag?	



Carnegie Mellon 

32 

Example	2:	Address	TranslaCon	with	TLB	
1	MB	of	virtual	memory 	 	4	KB	page	size	
256	KB	of	physical	memory 	TLB:	8	entries,	2-way	set	associa0ve	

¢  How	many	bits	are	needed	to	represent	the	virtual	
address	space?	

¢  How	many	bits	are	needed	to	represent	the	physical	
address	space?	

¢  How	many	bits	are	needed	to	represent	the	offset?	
	

¢  How	many	bits	are	needed	to	represent	VPN?	
¢  How	many	bits	are	in	the	TLB	index?	
¢  How	many	bits	are	in	the	TLB	tag?	

20.	(1	MB	=	220	bytes.)	

18.	(256	KB	=	218	bytes.)	

8.	(20-12.)	
12.	(4	KB	=	212	bytes.)	

2.	(4	sets	=	22	set	bits.)		
6.	(8-2.)	



Carnegie Mellon 

33 

Example	2a:	Address	TranslaCon	with	TLB	
¢  Translate	0x14213,	given	the	contents	of	TLB	and	the	first	

32	entries	of	the	page	table	below.	(All	the	numbers	are	
in	hexadecimal.)	



Carnegie Mellon 

34 

Example	2a:	Address	TranslaCon	with	TLB	

19	 18	 17	 16	 15	 14	 13	 12	 11	 10	 9	 8	 7	 6	 5	 4	 3	 2	 1	 0	

VPO	VPN	

VPN:	
TLBI:		
TLBT:	

TLB	Hit!	
PPN:	
Offset:	
	
Physical	address:	

0x14213 



Carnegie Mellon 

35 

Example	2a:	Address	TranslaCon	with	TLB	

19	 18	 17	 16	 15	 14	 13	 12	 11	 10	 9	 8	 7	 6	 5	 4	 3	 2	 1	 0	

VPO	VPN	

TLBI	TLBT	

VPN:	
TLBI:		
TLBT:	

TLB	Hit!	
PPN: 	0x13	
Offset:	0x213	
	
Physical	address:	

0x14213 

0	 0	 0	 1	 0	 1	 0	 0	 0	 0	 1	 0	 0	 0	 0	 1	 0	 0	 1	 1	

0x14	
0x00	
0x05	

0x13213	



Carnegie Mellon 

36 

Example	2b:	Address	TranslaCon	with	TLB	
¢  Translate	0x1F213,	given	the	contents	of	TLB	and	the	first	

32	entries	of	the	page	table	below.	



Carnegie Mellon 

37 

Example	2b:	Address	TranslaCon	with	TLB	

19	 18	 17	 16	 15	 14	 13	 12	 11	 10	 9	 8	 7	 6	 5	 4	 3	 2	 1	 0	

VPO	VPN	

0x1F213 

VPN:	
TLBI:		
TLBT:	



Carnegie Mellon 

38 

Example	2b:	Address	TranslaCon	with	TLB	

19	 18	 17	 16	 15	 14	 13	 12	 11	 10	 9	 8	 7	 6	 5	 4	 3	 2	 1	 0	

VPO	VPN	

TLBI	TLBT	

TLB	Miss!	
	
Step	2:	look	it	up	in	
the	page	table.	L	

0x1F213 

0	 0	 0	 1	 1	 1	 1	 1	 0	 0	 1	 0	 0	 0	 0	 1	 0	 0	 1	 1	

VPN:	
TLBI:		
TLBT:	

0x1F	
0x03	
0x07	



Carnegie Mellon 

39 

Example	2b:	Address	TranslaCon	with	TLB	

0	 0	 0	 1	 1	 1	 1	 1	 0	 0	 1	 0	 0	 0	 0	 1	 0	 0	 1	 1	

19	 18	 17	 16	 15	 14	 13	 12	 11	 10	 9	 8	 7	 6	 5	 4	 3	 2	 1	 0	

VPO	VPN	

TLBI	TLBT	 0x1F213 

VPN:	
TLBI:		
TLBT:	

0x1F	
0x03	
0x07	

Page	Table	Hit	
PPN:	
Offset:	
	
Physical	address:	



Carnegie Mellon 

40 

Example	2b:	Address	TranslaCon	with	TLB	

0	 0	 0	 1	 1	 1	 1	 1	 0	 0	 1	 0	 0	 0	 0	 1	 0	 0	 1	 1	

19	 18	 17	 16	 15	 14	 13	 12	 11	 10	 9	 8	 7	 6	 5	 4	 3	 2	 1	 0	

VPO	VPN	

TLBI	TLBT	 0x1F213 

VPN:	
TLBI:		
TLBT:	

0x1F	
0x03	
0x07	

Page	Table	Hit	
PPN: 	0x15	
Offset:	0x213	
	
Physical	address:	
0x15213	



Carnegie Mellon 

41 

Agenda 	 		
¢  Shell	Lab	FAQs	and	I/O	
¢  Malloc	Lab	Sneak	Preview	
¢  Virtual	Memory	Concepts	
¢  Address	TranslaCon	

§  Basic	
§  TLB	
§  Mul0level	



Carnegie Mellon 

42 

Address	TranslaCon	in	Real	Life	
¢  MulC	level	page	tables,	with	the	first	level	oten	called	a	

“page	directory”	
¢  Use	first	part	of	the	VPN	to	get	to	the	right	directory	and	

then	the	next	part	to	get	the	PPN	
¢  K-level	page	table	divides	VPN	into	k	parts	


