
Carnegie	Mellon	

1 

Excep&onal	Control	Flow	

15-213:	Introduc7on	to	Computer	Systems	
Recita7on	9:	Monday,	October	26th,	2015	
Celeste	Neary		
Adapted	from	slides	by	Ian	Hartwig	



Carnegie	Mellon	

2 

Agenda	
¢  Midterm	Wrap-Up	
¢  Excep7onal	Control	Flow	
¢  Processes	
¢  Signals	
¢  Shell	lab	



Carnegie	Mellon	

3 

Midterm	Wrap-Up	
¢  Midterms	scores	are	on	Autolab	
¢  View	exams	during	OH	in	5207	
¢  Regrade	requests	–	in	wri7ng	(hardcopy	only)	



Carnegie	Mellon	

4 

Excep&onal	Control	Flow	
¢  Up	to	now:	two	mechanisms	for	changing	control	flow:	

§  Jumps	and	branches	
§  Call	and	return	
Both	react	to	changes	in	program	state	
	

¢  Insufficient		for	a	useful	system:		
Difficult	to	react	to	changes	in	system	state		
§  data	arrives	from	a	disk	or	a	network	adapter	
§  instruc7on	divides	by	zero	
§  user	hits	Ctrl-C	at	the	keyboard	
§  System	7mer	expires	

¢  System	needs	mechanisms	for	“excep7onal	control	flow”	



Carnegie	Mellon	

5 

Asynchronous	Excep&ons	(Interrupts)	
¢  Caused	by	events	external	to	the	processor	

§  Indicated	by	se`ng	the	processor’s	interrupt	pin	
§  Handler	returns	to	“next”	instruc7on	

¢  Examples:	
§  I/O	interrupts	

§  hi`ng	Ctrl-C	at	the	keyboard	
§  arrival	of	a	packet	from	a	network	
§  arrival	of	data	from	a	disk	

§  Hard	reset	interrupt	
§  hi`ng	the	reset	bucon	

§  Sod	reset	interrupt	
§  hi`ng	Ctrl-Alt-Delete	on	a	PC	



Carnegie	Mellon	

6 

Synchronous	Excep&ons	
¢  Caused	by	events	that	occur	as	a	result	of	execu7ng	an	

instruc7on:	
§  Traps	

§  Inten7onal	
§  Examples:	system	calls,	breakpoint	traps,	special	instruc7ons	
§  Returns	control	to	“next”	instruc7on	

§  Faults	
§  Uninten7onal	but	possibly	recoverable		
§  Examples:	page	faults	(recoverable),	protec7on	faults	
(unrecoverable),	floa7ng	point	excep7ons	

§  Either	re-executes	faul7ng	(“current”)	instruc7on	or	aborts	
§  Aborts	

§  uninten7onal	and	unrecoverable	
§  Examples:	parity	error,	machine	check	
§  Aborts	current	program	



Carnegie	Mellon	

7 

Processes	
¢  What	is	a	program?	

§  A	bunch	of	data	and	instruc7ons	stored	in	an	executable	binary	file	
§  Wricen	according	to	a	specifica7on	that	tells	users	what	it	is	

supposed	to	do	
§  Stateless	since	binary	file	is	sta7c	



Carnegie	Mellon	

8 

Processes	
¢  Defini7on:	A	process	is	an	instance	of	a	running	program.	
¢  Process	provides	each	program	with	two	key	abstrac7ons:	

§  Logical	control	flow	
§  Each	program	seems	to	have	exclusive	use	of	the	CPU	

§  Private	virtual	address	space	
§  Each	program	seems	to	have	exclusive	use	of	main	memory	
§  Gives	the	running	program	a	state	

¢  How	are	these	Illusions	maintained?	
§  Process	execu7ons	interleaved	(mul7tasking)	or	run	on	separate	

cores	
§  Address	spaces	managed	by	virtual	memory	system	

§  Just	know	that	this	exists	for	now;	we’ll	talk	about	it	soon	



Carnegie	Mellon	

9 

Processes	
¢  Four	basic	States	

§  Running	
§  Execu7ng	instruc7ons	on	the	CPU	
§  Number	bounded	by	number	of	CPU	cores	

§  Runnable	
§ Wai7ng	to	be	running	

§  Blocked	
§ Wai7ng	for	an	event,	maybe	input	from	STDIN	
§  Not	runnable	

§  Zombie		
§  Terminated,	not	yet	reaped	

	



Carnegie	Mellon	

10 

Processes	
¢  Four	basic	process	control	func7on	families:	

§  fork()	
§  exec()			

§  And	other	variants	such	as	execve()	
§  exit()	
§  wait()	

§  And	variants	like	waitpid()	

¢  Standard	on	all	UNIX-based	systems	
¢  Don’t	be	confused:	

Fork(),	Exit(),	Wait()	are	all	wrappers	provided	by	CS:APP	



Carnegie	Mellon	

11 

Processes	
¢  int	fork(void)	

§  creates	a	new	process	(child	process)	that	is	iden7cal	to	the	calling	
process	(parent	process)	

§  OS	creates	an	exact	duplicate	of	parent’s	state:	
§  Virtual	address	space	(memory),	including	heap	and	stack	
§  Registers,	except	for	the	return	value	(%eax/%rax)	
§  File	descriptors	but	files	are	shared	

§  Result	à	Equal	but	separate	state	

§  Fork	is	interes7ng	(and	oden	confusing)	because		
it	is	called	once	but	returns	twice	



Carnegie	Mellon	

12 

Processes	
¢  int	fork(void)	

§  returns	0	to	the	child	process	
§  returns	child’s	pid	(process	id)	to	the	parent	process	
§  Usually	used	like:	
pid_t	pid	=	fork();	
	
if	(pid	==	0)	{	
			//	pid	is	0	so	we	can	detect	child	
			printf("hello	from	child\n");	
}	
	
else	{		
			//	pid	=	child’s	assigned	pid	
			printf("hello	from	parent\n");	
}	



Carnegie	Mellon	

13 

Processes	
¢  int	exec()	

§  Replaces	the	current	process’s	state	and	context	
§  But	keeps	PID,	open	files,	and	signal	context	

§  Provides	a	way	to	load	and	run	another	program	
§  Replaces	the	current	running	memory	image	with	that	of	new	
program	

§  Set	up	stack	with	arguments	and	environment	variables	
§  Start	execu7on	at	the	entry	point		

§  Never	returns	on	successful	execu7on	
§  The	newly	loaded	program’s	perspec7ve:	as	if	the	previous	

program	has	not	been	run	before	
§  More	useful	variant	is	int	execve()	
§  More	informa7on?	man	3	exec	



Carnegie	Mellon	

14 

Processes	
¢  void	exit(int	status)	

§  Normally	return	with	status	0	(other	numbers	indicate	an	error)	
§  Terminates	the	current	process	
§  OS	frees	resources	such	as	heap	memory	and	open	file	descriptors	

and	so	on…	
§  Reduce	to	a	zombie	state		

§  Must	wait	to	be	reaped	by	the	parent	process	(or	the	init	
process	if	the	parent	died)	

§  Signal	is	sent	to	the	parent	process	no7fying	of	death	
§  Reaper	can	inspect	the	exit	status	



Carnegie	Mellon	

15 

Processes	
¢  int	wait(int	*child_status)	

§  suspends	current	process	un7l	one	of	its	children	terminates	
§  return	value	is	the	pid	of	the	child	process	that	terminated	

§  When	wait	returns	a	pid	>	0,	child	process	has	been	reaped	
§  All	child	resources	freed	

§  if	child_status	!=	NULL,	then	the	object	it	points	to	will	be	set	to		a	
status	indica7ng	why	the	child	process	terminated	

§  More	useful	variant	is	int	waitpid()	
§  For	details:	man	2	wait	



Carnegie	Mellon	

16 

Process	Examples	
¢  What	are	the	possible	

output		(assuming	fork	
succeeds)	?	
§  Child!	

Parent!	
§  Parent!	

Child!	

¢  How	to	get	the	child	to	
always	print	first?	

		
pid_t	child_pid	=	fork();	
	
if	(child_pid	==	0){	
			/*	only	child	comes	here	*/	
	
			printf(“Child!\n”);	
	
			exit(0);	
}	
else{	
					
	
			printf(“Parent!\n”);	
}	



Carnegie	Mellon	

17 

int	status;	
pid_t	child_pid	=	fork();	
	
if	(child_pid	==	0){	
			/*	only	child	comes	here	*/	
	
			printf(“Child!\n”);	
	
			exit(0);	
}	
else{	
			waitpid(child_pid,	&status,	0);	
	
			printf(“Parent!\n”);	
}	

Process	Examples	
¢  Waits	7l	the	child	has	

terminated.	
				Parent	can	inspect	
exit	status	of			
				child	using	‘status’	
§  WEXITSTATUS(status)	

¢  Output	always:		
Child!	
Parent!	



Carnegie	Mellon	

18 

Process	Examples	

¢  An	example	of	something	
useful.	

¢  Why	is	the	first	arg	“/bin/ls”?	
	
¢  Will	child	reach	here?	

int	status;	
pid_t	child_pid	=	fork();	
char*	argv[]	=	{“/bin/ls”,	“-l”,	NULL};	
char*	env[]	=	{…,	NULL};	
	
if	(child_pid	==	0){	
			/*	only	child	comes	here	*/	
	
			execve(“/bin/ls”,	argv,	env);	
	
			/*	will	child	reach	here?	*/	
}	
else{	
			waitpid(child_pid,	&status,	0);	
	
			…	parent	continue	execution…	
}	



Carnegie	Mellon	

19 

Process	Examples	
¢  Unix	Process	Hierarchy:	

Login shell 

Child Child Child 

Grandchild Grandchild 

[0] 

Daemon 
e.g. httpd 

init [1] 



Carnegie	Mellon	

20 

Signals	
¢  A	signal	is	a	small	message	that	no7fies	a	process	that	an	event	

of	some	type	has	occurred	in	the	system	
§  akin	to	excep7ons	and	interrupts	(asynchronous)	
§  sent	from	the	kernel	(some7mes	at	the	request	of	another	process)	to	a	

process	
§  signal	type	is	iden7fied	by	small	integer	ID’s	(1-30)	
§  only	informa7on	in	a	signal	is	its	ID	and	the	fact	that	it	arrived	

ID	 Name	 Default Action	 Corresponding Event	
2	 SIGINT	 Terminate	 Interrupt (e.g., ctl-c from keyboard)	
9	 SIGKILL	 Terminate	 Kill program (cannot override or ignore)	

11	 SIGSEGV	 Terminate & Dump	 Segmentation violation	
14	 SIGALRM	 Terminate	 Timer signal	
17	 SIGCHLD	 Ignore	 Child stopped or terminated	



Carnegie	Mellon	

21 

Signals	
¢  Kernel	sends	(delivers)	a	signal	to	a	des2na2on	process	by	

upda7ng	some	state	in	the	context	of	the	des7na7on	
process	

¢  Kernel	sends	a	signal	for	one	of	the	following	reasons:	
§  Kernel	has	detected	a	system	event	such	as	Ctrl-C	(SIGINT),	divide-

by-zero	(SIGFPE),	or	the	termina7on	of	a	child	process	(SIGCHLD)	
§  Another	program	called	the	kill()	func7on	
§  The	user	used	a	kill	u7lity	



Carnegie	Mellon	

22 

Signals	
¢  A	des7na7on	process	receives	a	signal	when	it	is	forced	by	

the	kernel	to	react	in	some	way	to	the	delivery	of	the	signal	

¢  Receiving	a	signal	is	non-queuing	
§  There	is	only	one	bit	in	the	context	per	signal	
§  Receiving	1	or	300	SIGINTs	looks	the	same	to	the	process	

¢  Signals	are	received	at	a	context	switch	
¢  Three	possible	ways	to	react:	

§  Ignore	the	signal	(do	nothing)	
§  Terminate	the	process	(with	op7onal	core	dump)	
§  Catch	the	signal	by	execu7ng	a	user-level	func7on	called	signal	

handler	
§  Akin	to	a	hardware	excep7on	handler	being	called	in	response	
to	an	asynchronous	interrupt	



Carnegie	Mellon	

23 

Signals	
¢  A	des7na7on	process	receives	a	signal	when	it	is	forced	by	

the	kernel	to	react	in	some	way	to	the	delivery	of	the	signal	

¢  Blocking	signals	
§  Some7mes	code	needs	to	run	through	a	sec7on	that	can’t	be	

interrupted	
§  Implemented	with	sigprocmask()	

¢  Wai7ng	for	signals	
§  Some7mes,	we	want	to	pause	execu7on	un7l	we	get	a	specific	

signal	
§  Implemented	with	sigsuspend()	

¢  Can’t	modify	behavior	of	SIGKILL	and	SIGSTOP		



Carnegie	Mellon	

24 

Signals	
¢  Signal	handlers	

§  Can	be	installed	to	run	when	a	signal	is	received	
§  The	form	is			void		handler(int	signum){	…	}	
§  Separate	flow	of	control	in	the	same	process	
§  Resumes	normal	flow	of	control	upon	returning	
§  Can	be	called	any&me	when	the	appropriate	signal	is	
fired	



Carnegie	Mellon	

25 

Signals	
¢  int	sigsuspend(const	sigset_t	*mask)	

§  Can’t	use	wait()	twice	–	use	sigsuspend!	
§  Temporarily	replaces	the	signal	mask	of	the	calling	process	with	the	

mask	given	
§  Suspends	the	process	un7l	delivery	of	a	signal	whose	ac7on	is	to	

invoke	a	signal	handler	or	terminate	a	process	
§  Returns	if	the	signal	is	caught	

§  Signal	mask	restored	to	the	previous	state	
§  Use	sigaddset(),	sigemptyset(),	etc.	to	create	the	mask	



Carnegie	Mellon	

26 

Signal	Examples	
¢  Every	process	belongs	to	exactly	one	process	group	
¢  Process	groups	can	be	used	to	distribute	signals	easily	
¢  A	forked	process	becomes	a	member	of	the	parent’s	

process	group	

Fore-	
ground	
job	

Back-	
ground	
job	#1	

Back-	
ground	
job	#2	

Shell	

Child	 Child	

pid=10 
pgid=10 

Foreground		
process	group	20	

Background	
process	group	32	

Background	
process	group	40	

pid=20 
pgid=20 

pid=32 
pgid=32 

pid=40 
pgid=40 

pid=21 
pgid=20 

pid=22 
pgid=20 

getpgrp()	
Return	process	group	of	current	process	

setpgid() 
Change	process	group	of	a	process 



Carnegie	Mellon	

27 

//	sigchld	handler	installed	
	
pid_t	child_pid	=	fork();	
	
if	(child_pid	==	0){	
			/*	child	comes	here	*/	
	
			execve(……);	
}	
else{	
	
			add_job(child_pid);	
				
}	

Signal	Examples	

¢  Does	add_job	or	remove_job()	come	first?	
¢  Where	can	we	block	signals	in	this	code	to	guarantee	

correct	execu7on?	

void	sigchld_handler(int	signum)	
{	
				int	status;	
	
				pid_t	child_pid	=		
						waitpid(-1,	&status,	WNOHANG);	
	
				if	(WIFEXITED(status))	
							remove_job(child_pid);	
}	
	



Carnegie	Mellon	

28 

//	sigchld	handler	installed	
	
pid_t	child_pid	=	fork();	
	
if	(child_pid	==	0){	
			/*	child	comes	here	*/	
	
			execve(……);	
}	
else{	
	
			add_job(child_pid);	
				
}	

Signal	Examples	

¢  Does	add_job	or	remove_job()	come	first?	
¢  Where	can	we	block	signals	in	this	code	to	guarantee	

correct	execu7on?	

void	sigchld_handler(int	signum)	
{	
				int	status;	
	
				pid_t	child_pid	=		
						waitpid(-1,	&status,	WNOHANG);	
	
				if	(WIFEXITED(status))	
							remove_job(child_pid);	
}	
	

Block	SIGCHLD	

Unblock	SIGCHLD	

Unblock	SIGCHLD	



Carnegie	Mellon	

29 

Shell	Lab	
¢  Shell	Lab	is	out!	
¢  Due	Tuesday,	November	3rd	at	11:59pm	
¢  Read	the	code	we’ve	given	you	

§  There’s	a	lot	of	stuff	you	don’t	need	to	write	yourself;	we	gave	you	
quite	a	few	helper	func7ons	

§  It’s	a	good	example	of	the	code	we	expect	from	you!	

¢  Don’t	be	afraid	to	write	your	own	helper	func7ons;	this	is	
not	a	simple	assignment	



Carnegie	Mellon	

30 

Shell	Lab	
¢  Read	man	pages.	You	may	find	the	following	func7ons	

helpful:	
§  sigemptyset()	
§  sigaddset()	
§  sigprocmask()	
§  sigsuspend()	
§  waitpid()	
§  open()	
§  dup2()	
§  setpgid()	
§  kill()	

¢  Please	do	not	use	sleep()	to	solve	synchroniza7on	issues.	



Carnegie	Mellon	

31 

Shell	Lab	
¢  Hazards	

§  Race	condi7ons	
§  Hard	to	debug	so	start	early	(and	think	carefully)	

§  Reaping	zombies	
§  Race	condi7ons	
§  Handling	signals	correctly	

§  Wai7ng	for	foreground	job	
§  Think	carefully	about	what	the	right	way	to	do	this	is	



Carnegie	Mellon	

32 

Shell	Lab	Tes&ng	
¢  Run	your	shell	

§  This	is	the	fun	part!	
¢  tshref	

§  How	should	the	shell	behave?	
¢  runtrace	

§  Each	trace	tests	one	feature.	


