Midterm Review

15-213: Introduction to Computer Systems
Recitation 8: Monday, Oct. 19, 2015
Ben Spinelli
Agenda

- Midterm Logistics
- Brief Overview of *some* topics
- Practice Questions
Midterm

- **Tues Oct 20th to Fri Oct 23th.**
 - Duration – Designed to be take in 80min, but you have up to 4 hrs
 - If you have not signed up for a slot online, **do so now.**
 - You will only be allowed to take it during your slot
 - Bring your student ID with you

- **Note Sheet – ONE double sided 8 ½ x 11 paper**
 - No worked out problems on that sheet

- **No office hours this week**
 - You can still email the list
 - But responses might be slow due to volume, so be proactive, and read the book/lectures slides carefully beforehand
Midterm

■ What to study?
 ▪ Chapters 1-3 and Chapter 6

■ How to Study?
 ▪ Read each chapter 3 times, work practice problems and do problems from previous exams.
 ▪ Online practice exam allows you to get a feel for the format of the exam
 ▪ Some old practice exams include questions that use the IA32 architecture. You will only need to know x86-64 for the midterm.
Bits, Bytes & Integers

- Know how to do basic bit operations by hand
 - Shifting, addition, negation, and, or, xor, etc.

- If you have w bits
 - What are the largest/smallest representable signed numbers?
 - What are the largest/smallest representable unsigned numbers?
 - What happens to the bits when casting signed to unsigned (and vice versa)?

- Distinguish between logical and bitwise operators

- What happens in C if you do operations on mixed types (either different size, or signedness?)
Floating Point (IEEE Format)

- **Sign, Exponent, Mantissa**
 - \((-1)^s \times M \times 2^E\)
 - \(s\) – sign bit
 - \(M\) – Mantissa/Fraction bits
 - \(E\) – Determined by (but not equal to) exponent bits

- **Bias** \(2^{k-1} - 1\)

- **Three main categories of floats**
 - **Normalized**: Large values, not near zero
 - **Denormalized**: Small values close to zero
 - **Special Values**: Infinity/NaN
Floating Point (IEEE Format)

<table>
<thead>
<tr>
<th></th>
<th>Normalized</th>
<th>Denormalized</th>
<th>Special Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Represents:</td>
<td>Most numbers</td>
<td>Tiny numbers</td>
<td>Infinity, NaN</td>
</tr>
<tr>
<td>Exponent bits:</td>
<td>Not those (\rightarrow)</td>
<td>000...000</td>
<td>111...111</td>
</tr>
<tr>
<td>(E =)</td>
<td>(\text{exp} - \text{bias})</td>
<td>1 - bias</td>
<td>+/- (\infty) if frac = 000...000; otherwise NaN</td>
</tr>
<tr>
<td>(M =)</td>
<td>1.frac</td>
<td>.frac</td>
<td></td>
</tr>
</tbody>
</table>

- **Floating Point Rounding**
 - Round-up – if the spilled bits are greater than half
 - Round-down – if the spilled bits are less than half
 - Round to even – if the spilled bits are exactly equal to half
Floating point encoding. In this problem, you will work with floating point numbers based on the IEEE floating point format. We consider two different 6-bit formats:

Format A:

- There is one sign bit s.
- There are $k = 3$ exponent bits. The bias is $2^{k-1} - 1 = 3$.
- There are $n = 2$ fraction bits.

Format B:

- There is one sign bit s.
- There are $k = 2$ exponent bits. The bias is $2^{k-1} - 1 = 1$.
- There are $n = 3$ fraction bits.

For formats A and B, please write down the binary representation for the following (use round-to-even). Recall that for denormalized numbers, $E = 1 - \text{bias}$. For normalized numbers, $E = e - \text{bias}$.

<table>
<thead>
<tr>
<th>Value</th>
<th>Format A Bits</th>
<th>Format B Bits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zero</td>
<td>0 000 00</td>
<td>0 00 000</td>
</tr>
<tr>
<td>One</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1/2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11/8</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Assembly Loops

- Recognize common assembly instructions
- Know the uses of all registers in 64 bit systems
- Understand how different control flow is turned into assembly
 - For, while, do, if-else, switch, etc
- Be very comfortable with pointers and dereferencing
 - The use of parens in mov commands.
 - %rax vs. (%rax)
 - The options for memory addressing modes:
 - R(Rb, Ri, S)
 - lea vs. mov
Assembly Loop

00000000004004b6 <mystery>:
4004b6: mov $0x0,%eax
4004bb: jmp 4004d3 <mystery+0x1d>
4004bd: movslq %eax,%rdx
4004c0: lea (%rdi,%rdx,4),%rcx
4004c4: mov (%rcx),%edx
4004c6: test $0x1,%dl
4004c9: jne 4004d0 <mystery+0x1a>
4004cb: add $0x1,%edx
4004ce: mov %edx,(%rcx)
4004d0: add $0x1,%eax
4004d3: cmp %esi,%eax
4004d5: jne 4004bd <mystery+0x7>
4004d7: repz retq

void mystery(int *array, int n)
{
 int i;
 for(i; i < n)
 {
 if(array[i] == 0)
 array[i];
 }
}
Assembly – Stack

- How arguments are passed to a function
 - x86-64

- Return value from a function

- How these instructions modify stack
 - call
 - leave
 - ret
 - pop
 - push
Array Access

- A suggested method for these problems:
 - Start with the C code
 - Then look at the assembly Work backwards!
 - Understand how in assembly, a logical 2D array is implemented as a 1D array, using the width of the array as a multiplier for access

<table>
<thead>
<tr>
<th>[0][0] = [0]</th>
<th>[0][1] = [1]</th>
<th>[0][2] = [2]</th>
<th>[0][3] = [3]</th>
</tr>
</thead>
<tbody>
<tr>
<td>[1][0] = [4]</td>
<td>[1][1] = [5]</td>
<td>[1][2] = [6]</td>
<td>[1][3] = [7]</td>
</tr>
<tr>
<td>[2][0] = [8]</td>
<td>[2][1] = [9]</td>
<td>[2][2] = [10]</td>
<td>[2][3] = [11]</td>
</tr>
</tbody>
</table>

\[
\begin{align*}
 [0][2] & = 0 \times 4 + 2 = 2 \\
 [1][3] & = 1 \times 4 + 3 = 7 \\
 [2][1] & = 2 \times 4 + 1 = 9 \\
\end{align*}
\]

\[[i][j] = i \times \text{width of array} + j \]
int array1[H][J];
int array2[J][H];

int copy_array(int x, int y) {
 array2[y][x] = array1[x][y];

 return 1;
}

Suppose the above C code generates the following x86-64 assembly code:

```assembly
# On entry:
#   %edi = x
#   %esi = y
#
# copy_array:
    movslq  %esi,%rsi
    movslq  %edi,%rdi
    movq    %rsi, %rax
    salq    $4, %rax
    subq    %rsi, %rax
    addq    %rdi, %rax
    leaq    (%rdi,%rdi,2), %rdi
    addq    %rsi, %rdi
    movl    array1(,%rdi,4), %edx
    movl    %edx, array2(,%rax,4)
    movl    $1, %eax
    ret
```

Fall 2010;
Caching Concepts

- **Dimensions: S, E, B**
 - S: Number of sets
 - E: Associativity – number of lines per set
 - B: Block size – number of bytes per block (1 block per line)

- **Given Values for S,E,B,m**
 - Find which address maps to which set
 - Is it a Hit/Miss? Is there an eviction?
 - Hit rate/Miss rate

- **Types of misses**
 - Which types can be avoided?
 - What cache parameters affect types/number of misses?
Questions/Advice

- Relax!
- Work Past exams!
- Email us - (15-213-staff@cs.cmu.edu)