Cache Lab Implementation and Blocking

Aditya Shah
Recitation 7: Oct 8th, 2015
Welcome to the World of Pointers!

MAN, I SUCK AT THIS GAME.
CAN YOU GIVE ME
A FEW POINTERS?

0x3A28213A
0x6339392C,
0x7363682E.

I HATE YOU.
Outline

- Schedule
- Memory organization
- Caching
 - Different types of locality
 - Cache organization
- Cache lab
 - Part (a) Building Cache Simulator
 - Part (b) Efficient Matrix Transpose
 - Blocking
Class Schedule

- **Cache Lab**
 - Due this Thursday, Oct 15\(^{th}\).
 - Start now (if you haven’t already!)

- **Exam Soon!**
 - Start doing practice problems.
 - They have been uploaded on to the Course Website!
Memory Hierarchy

- **L0:** Registers
 - CPU registers hold words retrieved from L1 cache

- **L1:** L1 cache (SRAM)
 - L1 cache holds cache lines retrieved from L2 cache

- **L2:** L2 cache (SRAM)
 - L2 cache holds cache lines retrieved from main memory

- **L3:** Main memory (DRAM)
 - Main memory holds disk blocks retrieved from local disks

- **L4:** Local secondary storage (local disks)
 - Local disks hold files retrieved from disks on remote network servers

- **L5:** Remote secondary storage (tapes, distributed file systems, Web servers)
 - Larger, slower, cheaper per byte

- **L6:** Smaller, faster, costlier per byte
Memory Hierarchy

- Registers
- SRAM
- DRAM
- Local Secondary storage
- Remote Secondary storage

We will discuss this interaction
SRAM vs DRAM tradeoff

- **SRAM (cache)**
 - Faster (L1 cache: 1 CPU cycle)
 - Smaller (Kilobytes (L1) or Megabytes (L2))
 - More expensive and “energy-hungry”

- **DRAM (main memory)**
 - Relatively slower (hundreds of CPU cycles)
 - Larger (Gigabytes)
 - Cheaper
Locality

- **Temporal locality**
 - Recently referenced items are likely to be referenced again in the near future
 - After accessing address X in memory, save the bytes in cache for future access

- **Spatial locality**
 - Items with nearby addresses tend to be referenced close together in time
 - After accessing address X, save the block of memory around X in cache for future access
Memory Address

- 64-bit on shark machines

memory address

- Block offset: b bits
- Set index: s bits
- Tag Bits: (Address Size – b – s)
Cache

- A cache is a set of 2^s cache sets

- A cache set is a set of E cache lines
 - E is called associativity
 - If $E=1$, it is called “direct-mapped”

- Each cache line stores a block
 - Each block has $B = 2^b$ bytes

- Total Capacity = $S \times B \times E$
Visual Cache Terminology

- E lines per set
- $S = 2^s$ sets
- $B = 2^b$ bytes per cache block (the data)

Address of word:
- t bits
- s bits
- b bits

- tag
- set index
- block offset

Data begins at this offset
General Cache Concepts

Smaller, faster, more expensive memory caches a subset of the blocks.

Data is copied in block-sized transfer units.

Larger, slower, cheaper memory viewed as partitioned into “blocks”.

Cache

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>9</td>
<td>10</td>
<td>3</td>
</tr>
</tbody>
</table>

Memory

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
</tr>
<tr>
<td>8</td>
<td>9</td>
<td>10</td>
<td>11</td>
</tr>
<tr>
<td>12</td>
<td>13</td>
<td>14</td>
<td>15</td>
</tr>
</tbody>
</table>
General Cache Concepts: Miss

Data in block b is needed

Block b is not in cache: Miss!

Block b is fetched from memory

Block b is stored in cache

- Placement policy: determines where b goes
- Replacement policy: determines which block gets evicted (victim)
General Caching Concepts: Types of Cache Misses

- **Cold (compulsory) miss**
 - The first access to a block has to be a miss

- **Conflict miss**
 - Conflict misses occur when the level k cache is large enough, but multiple data objects all map to the same level k block
 - E.g., Referencing blocks 0, 8, 0, 8, 0, 8, ... would miss every time

- **Capacity miss**
 - Occurs when the set of active cache blocks (working set) is larger than the cache
Cache Lab

- Part (a) Building a cache simulator
- Part (b) Optimizing matrix transpose
Part (a) : Cache simulator

A cache simulator is NOT a cache!
- Memory contents NOT stored
- Block offsets are NOT used – the b bits in your address don’t matter.
- Simply count hits, misses, and evictions

Your cache simulator needs to work for different s, b, E, given at run time.

Use LRU – Least Recently Used replacement policy
- Evict the least recently used block from the cache to make room for the next block.
- Queues ? Time Stamps ?
Part (a) : Hints

- **A cache is just 2D array of cache lines:**
 - struct cache_line cache[S][E];
 - $S = 2^s$, is the number of sets
 - E is associativity

- **Each cache_line has:**
 - Valid bit
 - Tag
 - LRU counter (only if you are not using a queue)
Part (a) : getopt

- `getopt()` automates parsing elements on the Unix command line if function declaration is missing
 - Typically called in a loop to retrieve arguments
 - Its return value is stored in a local variable
 - When `getopt()` returns -1, there are no more options

- To use `getopt`, your program must include the header file
  ```c
  #include <unistd.h>
  ```

- If not running on the shark machines then you will need
  ```c
  #include <getopt.h>.
  ```
 - Better Advice: Run on Shark Machines!
Part (a) : getopt

- A switch statement is used on the local variable holding the return value from getopt()
 - Each command line input case can be taken care of separately
 - "optarg" is an important variable – it will point to the value of the option argument

- Think about how to handle invalid inputs

- For more information,
 - look at man 3 getopt
Part (a): getopt Example

```c
int main(int argc, char** argv){
    int opt,x,y;
    /* looping over arguments */
    while(-1 != (opt = getopt(argc, argv, "x:y:"))){
        /* determine which argument it's processing */
        switch(opt) {
            case 'x':
                x = atoi(optarg);
                break;
            case 'y':
                y = atoi(optarg);
                break;
            default:
                printf("wrong argument\n");
                break;
        }
    }
}
```

Suppose the program executable was called “foo”. Then we would call “./foo -x 1 –y 3” to pass the value 1 to variable x and 3 to y.
Part (a) : fscanf

The fscanf() function is just like scanf() except it can specify a stream to read from (scanf always reads from stdin)

- parameters:
 - A stream pointer
 - format string with information on how to parse the file
 - the rest are pointers to variables to store the parsed data
- You typically want to use this function in a loop. It returns -1 when it hits EOF or if the data doesn’t match the format string

For more information,

- man fscanf
- http://crasseux.com/books/ctutorial/fscanf.html

fscanf will be useful in reading lines from the trace files.

- L 10,1
- M 20,1
Part (a) : fscanf example

FILE * pFile; //pointer to FILE object

pFile = fopen ("tracefile.txt","r"); //open file for reading

char identifier;
unsigned address;
int size;
// Reading lines like " M 20,1" or "L 19,3"

while(fscanf(pFile," %c %x,%d", &identifier, &address, &size)>0) {
 // Do stuff
}

fclose(pFile); //remember to close file when done
Part (a) : Malloc/free

- Use malloc to allocate memory on the heap

- Always free what you malloc, otherwise may get memory leak
 - some_pointer_you_malloced = malloc(sizeof(int));
 - Free(some_pointer_you_malloced);

- Don’t free memory you didn’t allocate
Part (b) Efficient Matrix Transpose

- **Matrix Transpose** (A → B)

Matrix A

```
1  2  3  4
5  6  7  8
9 10 11 12
13 14 15 16
```

Matrix B

```
1  5  9  13
2  6 10 14
3  7 11 15
4  8 12 16
```

- How do we optimize this operation using the cache?
Part (b) : Efficient Matrix Transpose

- Suppose Block size is 8 bytes?

- Access A[0][0] cache miss
- Access B[0][0] cache miss
- Access A[0][1] cache hit
- Access B[1][0] cache miss

Should we handle 3 & 4 next or 5 & 6?
Part (b) : Blocking

- **Blocking**: divide matrix into sub-matrices.

- **Size of sub-matrix depends on** cache block size, cache size, input matrix size.

- Try different sub-matrix sizes.
Example: Matrix Multiplication

c = (double *) calloc(sizeof(double), n*n);

/* Multiply n x n matrices a and b */
void mmm(double *a, double *b, double *c, int n) {
 int i, j, k;
 for (i = 0; i < n; i++)
 for (j = 0; j < n; j++)
 for (k = 0; k < n; k++)
 c[i*n + j] += a[i*n + k] * b[k*n + j];
}
Cache Miss Analysis

- **Assume:**
 - Matrix elements are doubles
 - Cache block = 8 doubles
 - Cache size $C \ll n$ (much smaller than n)

- **First iteration:**
 - $n/8 + n = 9n/8$ misses
 - Afterwards *in cache:* (schematic)
Cache Miss Analysis

- **Assume:**
 - Matrix elements are doubles
 - Cache block = 8 doubles
 - Cache size $C < n$ (much smaller than n)

- **Second iteration:**
 - Again: $n/8 + n = 9n/8$ misses

- **Total misses:**
 - $9n/8 \times n^2 = (9/8) \times n^3$
c = (double *) calloc(sizeof(double), n*n);

/* Multiply n x n matrices a and b */
void mmm(double *a, double *b, double *c, int n) {
 int i, j, k;
 for (i = 0; i < n; i+=B)
 for (j = 0; j < n; j+=B)
 for (k = 0; k < n; k+=B)
 /* B x B mini matrix multiplications */
 for (i1 = i; i1 < i+B; i++)
 for (j1 = j; j1 < j+B; j++)
 for (k1 = k; k1 < k+B; k++)
 c[i1*n+j1] += a[i1*n + k1]*b[k1*n + j1];
}

Block size B x B
Cache Miss Analysis

Assume:
- Cache block = 8 doubles
- Cache size \(C \ll n \) (much smaller than \(n \))
- Three blocks fit into cache: \(3B^2 < C \)

First (block) iteration:
- \(B^2/8 \) misses for each block
- \(2n/B \times B^2/8 = nB/4 \) (omitting matrix \(c \))

Afterwards in cache (schematic)
Cache Miss Analysis

Assume:
- Cache block = 8 doubles
- Cache size $C \ll n$ (much smaller than n)
- Three blocks fit into cache: $3B^2 < C$

Second (block) iteration:
- Same as first iteration
- $2n/B * B^2/8 = nB/4$

Total misses:
- $nB/4 * (n/B)^2 = n^3/(4B)$
Part(b) : Blocking Summary

- No blocking: \((9/8) \times n^3\)
- Blocking: \(1/(4B) \times n^3\)

- Suggest largest possible block size \(B\), but limit \(3B^2 < C\)!

- Reason for dramatic difference:
 - Matrix multiplication has inherent temporal locality:
 - Input data: \(3n^2\), computation \(2n^3\)
 - Every array elements used \(O(n)\) times!
 - But program has to be written properly

- For a detailed discussion of blocking:
Part (b) : Specs

■ **Cache:**
 - You get 1 kilobytes of cache
 - Directly mapped (E=1)
 - Block size is 32 bytes (b=5)
 - There are 32 sets (s=5)

■ **Test Matrices:**
 - 32 by 32
 - 64 by 64
 - 61 by 67
Part (b)

- Things you’ll need to know:
 - Warnings are errors
 - Header files
 - Eviction policies in the cache
Warnings are Errors

- Strict compilation flags

- Reasons:
 - Avoid potential errors that are hard to debug
 - Learn good habits from the beginning

- Add “-Werror” to your compilation flags
Missing Header Files

- Remember to include files that we will be using functions from

- If function declaration is missing
 - Find corresponding header files
 - Use: man <function-name>

- Live example
 - man 3 getopt
Eviction policies of Cache

- The first row of Matrix A evicts the first row of Matrix B
 - Caches are memory aligned.
 - Matrix A and B are stored in memory at addresses such that both the first elements align to the same place in cache!
 - Diagonal elements evict each other.

- Matrices are stored in memory in a row major order.
 - If the entire matrix can’t fit in the cache, then after the cache is full with all the elements it can load. The next elements will evict the existing elements of the cache.
 - Example:- 4x4 Matrix of integers and a 32 byte cache.
 - The third row will evict the first row!
Style

■ Read the style guideline
 ▪ But I already read it!
 ▪ Good, read it again.

■ Start forming good habits now!
Questions?