
Carnegie	Mellon	

1

Data	Representa+on	

Recita/on	3:	Monday,	September	14th,	2015	
Dhruven	Shah,	Ben	Spinelli	

Carnegie	Mellon	

2

Welcome	to	Recita+on	
¢  Recita/on	is	a	place	for	interac/on	

§  If	you	have	ques/ons,	please	ask.	
§  If	you	want	to	go	over	an	example	not	planned	for	recita/on,	let	

me	know.	

¢  We’ll	cover:	
§  A	quick	recap	of	topics	from	class,	especially	ones	we	have	found	

students	struggled	with	in	the	past	
§  Example	problems	to	reinforce	those	topics	and	prepare	for	exams	
§  Demos,	/ps,	and	ques/ons	for	labs	

Carnegie	Mellon	

3

News	
¢  Course	Website:	www.cs.cmu.edu/~213	
¢  Access	to	Autolab	
¢  Office	hours	in	GHC	5207	

§  Sunday	–	Thursday	6:00-9:00	pm	
§  Addi/onal	office	hours	near	due	dates,	see	website	for	schedule	

¢  Linux	boot	camp	this	Saturday,	2:00-4:00	pm	in	Gates	4401	
¢  Data	lab	due	September	17,	11:59	pm	EDT	

Carnegie	Mellon	

4

Agenda	
¢  How	do	I	Data	Lab?	
¢  Integers	

§  Biasing	division	
§  Endianness	

¢  Floa/ng	point	
§  Binary	frac/ons	
§  IEEE	standard	
§  Example	problem	

Carnegie	Mellon	

5

How	do	I	Data	Lab?	
¢  Step	1:	Download	lab	files	

§  All	lab	files	are	on	Autolab	
§  Remember	to	also	read	the	lab	handout	(“view	writeup”	link)	

¢  Step	2:	Work	on	the	right	machines	
§  Remember	to	do	all	your	lab	work	on	Andrew	or	Shark	machines	

§  Some	later	labs	will	restrict	you	to	just	the	shark	machines	
(bomb	lab,	for	example)	

§  This	includes	untaring	the	handout.	Otherwise,	you	may	lose	some	
permissions	bits	

§  If	you	get	a	permission	denied	error,	try	“chmod	+x	filename”	

Carnegie	Mellon	

6

How	do	I	Data	Lab?	
¢  Step	3:	Edit	and	test	

§  bits.c	is	the	file	you’re	looking	for	
§  Remember	you	have	3	ways	to	test	your	solu/ons.	

§  btest	
§  dlc	
§  BDD	checker	

§  driver.pl	runs	the	same	tests	as	Autolab	

¢  Step	4:	Submit	
§  Unlimited	submissions,	but	please	don’t	use	Autolab	in	place	of	

driver.pl	
§  Must	submit	via	web	form	
§  To	package/download	files	to	your	computer,	use	

“tar	-cvzf	out.tar.gz	in1	in2	…”	and	your	favorite	file	transfer	
protocol	

Carnegie	Mellon	

7

How	do	I	Data	Lab?	
¢  Tips	

§  Write	C	like	it’s	1989	
§  Declare	variable	at	top	of	func/on	
§  Make	sure	closing	brace	(“}”)	is	in	1st	column	
§  We	won’t	be	using	the	dlc	compiler	for	later	labs	

§  Be	careful	of	operator	precedence	
§  Do	you	know	what	order	~a+1+b*c<<3*2	will	execute	in?	
§  Neither	do	I.	Use	parentheses:	(~a)+1+(b*(c<<3)*2)	

§  Take	advantage	of	special	operators	and	values	like	!,	0,	and	Tmin	

§  Reducing	ops	once	you’re	under	the	threshold	won’t	get	you	extra	
points.	

§  Undefined	behavior	
§  Like	shiking	by	>31.	See	Anita’s	rant.	

Carnegie	Mellon	

8

Anita’s	Rant	
¢  From	the	Intel	x86	Reference:	

“These	instruc/ons	shik	the	bits	in	the	first	operand	(des/na/on	
operand)	to	the	lek	or	right	by	the	number	of	bits	specified	in	the	
second	operand	(count	operand).	Bits	shiked	beyond	the	des/na/on	
operand	boundary	are	first	shiked	into	the	CF	flag,	then	discarded.	At	
the	end	of	the	shik	opera/on,	the	CF	flag	contains	the	last	bit	shiked	
out	of	the	des/na/on	operand.	
The	des/na/on	operand	can	be	a	register	or	a	memory	loca/on.	The	
count	operand	can	be	an	immediate	value	or	register	CL.	The	count	is	
masked	to	five	bits,	which	limits	the	count	range	to	0	to	31.	A	special	
opcode	encoding	is	provided	for	a	count	of	1.”	

Carnegie	Mellon	

9

Integers	-	Biasing	
¢  Can	mul/ply/divide	powers	of	2	with	shik	

§  Mul/ply:	
§  Lek	shik	by	k	to	mul/ply	by	2k	

§  Divide:	
§  Right	shik	by	k	to	divide	by	2k	

§  …	for	posi/ve	numbers	
§  Shiking	rounds	towards	-inf,	but	we	want	to	round	to	0	
§  Solu/on:	biasing	when	nega/ve	

Carnegie	Mellon	

10

Integers	–	Endianness	
¢  Endianness	describes	which	bit	is	most	significant	in	a	

binary	number	
¢  You	won’t	need	to	work	with	this	un/l	bomb	lab	
¢  Big	endian:	

§  First	byte	(lowest	address)	is	the	most	significant	
§  This	is	how	we	typically	talk	about	binary	numbers	

¢  Liple	endian:	
§  First	byte	(lowest	address)	is	the	least	significant	
§  Intel	x86	(shark/andrew	linux	machines)	implement	this	

Carnegie	Mellon	

11

2i	

2i-1	

4	
2	
1	

1/2	
1/4	
1/8	

2-j	

bi	 bi-1	 •••	 b2	 b1	 b0	 b-1	 b-2	 b-3	 •••	 b-j	

• • •

Floa+ng	Point	–	Frac+ons	in	Binary	

¢ Representa/on	
§  Bits	to	right	of	“binary	point”	

represent	frac/onal	powers	of	2	
§  Represents	ra/onal	number:	

• • •

Carnegie	Mellon	

12

Floa+ng	Point	–	IEEE	Standard	
¢  Single	precision:	32	bits	

¢  Double	precision:	64	bits	

¢  Extended	precision:	80	bits	(Intel	only)	

s exp frac

1 8-bits 23-bits

s exp frac

1 11-bits 52-bits

s exp frac

1 15-bits 63 or 64-bits

Carnegie	Mellon	

13

Floa+ng	Point	–	IEEE	Standard	
¢  What	does	this	mean?	

§  We	can	think	of	floa/ng	point	as	binary	scien/fic	nota/on	
§  IEEE	format	includes	a	few	op/miza/ons	to	increase	range	for	
our	given	number	of	bits	

§  The	number	represented	is	essen4ally	(sign	*	frac	*	2exp)	
§  There	are	a	few	steps	I	lek	out	there	

¢  Example:	
§  Assume	our	floa/ng	point	format	has	no	sign	bit,	k	=	3	exponent	

bits,	and	n=2	frac+on	bits	
§  What	does	10010	represent?	

Carnegie	Mellon	

14

Floa+ng	Point	–	IEEE	Standard	
¢  What	does	this	mean?	

§  We	can	think	of	floa/ng	point	as	binary	scien/fic	nota/on	
§  IEEE	format	includes	a	few	op/miza/ons	to	increase	range	for	
our	given	number	of	bits	

§  The	number	represented	is	essen4ally	(sign	*	frac	*	2exp)	
§  There	are	a	few	steps	I	lek	out	there	

¢  Example:	
§  Assume	our	floa/ng	point	format	has	no	sign	bit,	k	=	3	exponent	

bits,	and	n=2	frac+on	bits	
§  What	does	10010	represent?	3	

Carnegie	Mellon	

15

Floa+ng	Point	–	IEEE	Standard	
¢  Bias	

§  exp	is	unsigned;	needs	a	bias	to	represent	nega/ve	numbers	
§  Bias	=	2k-1	-	1,	where	k	is	the	number	of	exponent	bits	
§  Can	also	be	thought	of	as	bit	papern	0b011…111	

¢  		

§  When	conver/ng	frac/int	=>	float,	assume	normalized	un/l	proven	
otherwise	

Normalized	 Denormalized	
exp	=	0	

Implied	leading	1	

E	=	exp	-	Bias	

Denser	near	origin	

Represents	small	numbers	

Carnegie	Mellon	

16

Floa+ng	Point	–	IEEE	Standard	
¢  Bias	

§  exp	is	unsigned;	needs	a	bias	to	represent	nega/ve	numbers	
§  Bias	=	2k-1	-	1,	where	k	is	the	number	of	exponent	bits	
§  Can	also	be	thought	of	as	bit	papern	0b011…111	

¢  		

§  When	conver/ng	frac/int	=>	float,	assume	normalized	un/l	proven	
otherwise	

Normalized	 Denormalized	
0	<	exp	<	(2k-1)	 exp	=	0	

Implied	leading	1	 Leading	0	

E	=	exp	-	Bias	 E	=	1	-	Bias.	Why?	

Denser	near	origin	 Evenly	spaced	

Represents	large	numbers	 Represents	small	numbers	

Carnegie	Mellon	

17

Floa+ng	Point	–	IEEE	Standard	
¢  Special	Cases	(exp	=	2k-1)	

§  Infinity	
§  Result	of	an	overflow	during	calcula/on	or	division	by	0	
§  exp	=	2k-1,	frac	=	0	

§  Not	a	Number	(NaN)	
§  Result	of	illegal	opera/on	(sqrt(-1),	inf	–	inf,	inf	*	0)	
§  exp	=	2k-1,	frac	!=	0	

§  Keep	in	mind	these	special	cases	are	not	the	same	

Carnegie	Mellon	

18

Floa+ng	Point	–	IEEE	Standard	
¢  Round	to	even	

§  Why?	Avoid	sta/s/cal	bias	of	rounding	up	or	down	on	half.	
§  How?	Like	this:	

1.01002	 truncate	 1.012	
1.01012	 below	half;	round	down	 1.012	
1.01102	 interes/ng	case;	round	to	even	 1.102	
1.01112	 above	half;	round	up	 1.102	
1.10002	 truncate	 1.102	
1.10012	 below	half;	round	down	 1.102	
1.10102	 Interes/ng	case;	round	to	even	 1.102	
1.10112	 above	half;	round	up	 1.112	
1.11002	 truncate	 1.112	

Carnegie	Mellon	

19

Rounding	

¢  Round	up	condi/ons	
§  Round	=	1,	S/cky	=	1	➙	>	0.5	
§  Guard	=	1,	Round	=	1,	S/cky	=	0	➙	Round	to	even	
Value 	Frac/on 	GRS 	Incr? 	Rounded	
 128 1.0000000 000 N 1.000
 15 1.1010000 100 N 1.101
 17 1.0001000 010 N 1.000
 19 1.0011000 110 Y 1.010
 138 1.0001010 011 Y 1.001
 63 1.1111100 111 Y 10.000

1.BBGRXXX
Guard	bit:	LSB	of	result	

Round	bit:	1st	bit	removed	
S/cky	bit:	OR	of	remaining	bits	

Carnegie	Mellon	

20

Floa+ng	Point	–	Example	
¢  Consider	the	following	5-bit	floa/ng	point	representa/on	

based	on	the	IEEE	floa/ng	point	format.	This	format	does	
not	have	a	sign	bit	–	it	can	only	represent	nonnega/ve	
numbers.	
§  There	are	k=3	exponent	bits.	
§  There	are	n=2	frac/on	bits.	

¢  What	is	the…	
§  Bias?	
§  Largest	denormalized	number?	
§  Smallest	normalized	number?	
§  Largest	finite	number	it	can	represent?	
§  Smallest	non-zero	value	it	can	represent?	

4 3 2 1 0
exp frac

Carnegie	Mellon	

21

Floa+ng	Point	–	Example	
¢  Consider	the	following	5-bit	floa/ng	point	representa/on	

based	on	the	IEEE	floa/ng	point	format.	This	format	does	
not	have	a	sign	bit	–	it	can	only	represent	nonnega/ve	
numbers.	
§  There	are	k=3	exponent	bits.	
§  There	are	n=2	frac/on	bits.	

¢  What	is	the…	
§  Bias?	0112	=	3	
§  Largest	denormalized	number?	000	112	=	0.00112	=	3/16	
§  Smallest	normalized	number?	001	002	=	0.01002	=	1/4	
§  Largest	finite	number	it	can	represent?	110	112	=	1110.02	=	14	
§  Smallest	non-zero	value	it	can	represent?	000	012	=	0.00012	=	1/16	

4 3 2 1 0
exp frac

Carnegie	Mellon	

22

Floa+ng	Point	–	Example	
¢  For	the	same	problem,	complete	the	following	table:	

Value	 Floa+ng	Point	Bits	 Rounded	Value	

9/32	

8	

9	

000	10	

19	

Carnegie	Mellon	

23

Floa+ng	Point	–	Example	
¢  For	the	same	problem,	complete	the	following	table:	

Value	 Floa+ng	Point	Bits	 Rounded	Value	

9/32	 001	00	 1/4	

8	 110	00	 8	

9	 110	00	 8	

1/8	 000	10	

19	 111	00	 inf	

Carnegie	Mellon	

24

Floa+ng	Point	Recap	
¢  Floa/ng	point	=	(-1)s	M	2E	

¢  MSB	is	sign	bit	s	
¢  Bias	=	2(k-1)	–	1	(k	is	num	of	exp	bits)		
¢  Normalized	(larger	numbers,	denser	towards	0)	

§  exp ≠	000…0	and	exp ≠	111…1	
§  M	=	1.frac
§  E	=	exp -	Bias	

¢  Denormalized	(smaller	numbers,	evenly	spread)	
§  exp =	000….0	
§  M	=	0.frac	
§  E	=	-	Bias	+	1	

Carnegie	Mellon	

25

Floa+ng	Point	Recap	
¢  Special	Cases	

§  +/-	Infinity:	exp =	111…1	and	frac =	000…0	
§  +/-	NaN:	exp =	111…1	and	frac ≠	000…0	
§  +0:	s	=	0,	exp =	000…0	and	frac =	000…0	
§  -0:	s	=	1,	exp =	000…0	and	frac =	000…0	

¢  Round	towards	even	when	half	way	(lsb	of	frac =	0)	

Carnegie	Mellon	

26

Ques+ons?	

