
Carnegie Mellon

1 Bryant	and	O’Hallaron,	Computer	Systems:	A	Programmer’s	Perspec;ve,	Third	Edi;on	

Concurrent	Programming	
	
15-213:	Introduc;on	to	Computer	Systems	
23rd	Lecture,	Nov.	17,	2015	

Instructors:		
Randal	E.	Bryant	and	David	R.	O’Hallaron	

Carnegie Mellon

2 Bryant	and	O’Hallaron,	Computer	Systems:	A	Programmer’s	Perspec;ve,	Third	Edi;on	

Concurrent	Programming	is	Hard!	

¢  The	human	mind	tends	to	be	sequen9al	

¢  The	no9on	of	9me	is	o<en	misleading	

¢  Thinking	about	all	possible	sequences	of	events	in	a	
computer	system	is	at	least	error	prone	and	
frequently	impossible	

Carnegie Mellon

3 Bryant	and	O’Hallaron,	Computer	Systems:	A	Programmer’s	Perspec;ve,	Third	Edi;on	

Concurrent	Programming	is	Hard!	

¢  Classical	problem	classes	of	concurrent	programs:	
§  Races:	outcome	depends	on	arbitrary	scheduling	decisions	
elsewhere	in	the	system	
§  Example:	who	gets	the	last	seat	on	the	airplane?	

§  Deadlock:	improper	resource	alloca;on	prevents	forward	progress	
§  Example:	traffic	gridlock	

§  Livelock	/	Starva4on	/	Fairness:	external	events	and/or	system	
scheduling	decisions	can	prevent	sub-task	progress	
§  Example:	people	always	jump	in	front	of	you	in	line	

¢  Many	aspects	of	concurrent	programming	are	beyond	the	
scope	of	our	course..	
§  but,	not	all	J	
§  We’ll	cover	some	of	these	aspects	in	the	next	few	lectures.		

Carnegie Mellon

4 Bryant	and	O’Hallaron,	Computer	Systems:	A	Programmer’s	Perspec;ve,	Third	Edi;on	

Itera9ve	Servers	

¢  Itera9ve	servers	process	one	request	at	a	9me	

Client 1 Server Client 2
connect

accept connect

write read

call read

close

accept

write

read

close Wait	for	server	
to	finish	with		
Client	1	

call read

write

ret read

write ret read
read

Carnegie Mellon

5 Bryant	and	O’Hallaron,	Computer	Systems:	A	Programmer’s	Perspec;ve,	Third	Edi;on	

Where	Does	Second	Client	Block?	

¢  Second	client	aKempts	to	
connect	to	itera9ve	server	

¢  Call	to	connect	returns	
§  Even	though	connec;on	not	

yet	accepted	
§  Server	side	TCP	manager	

queues	request	
§  Feature	known	as	“TCP	

listen	backlog”	

¢  Call	to	rio_writen	returns	
§  Server	side	TCP	manager	

buffers	input	data	

¢  Call	to	rio_readlineb	
blocks	
§  Server	hasn’t	wri]en	

anything	for	it	to	read	yet.	

Client	
socket

rio_readlineb

rio_writen

Connec9on	
request	

open_clientfd

connect

Carnegie Mellon

6 Bryant	and	O’Hallaron,	Computer	Systems:	A	Programmer’s	Perspec;ve,	Third	Edi;on	

Fundamental	Flaw	of	Itera9ve	Servers	

¢  Solu9on:	use	concurrent	servers	instead	
§  Concurrent	servers	use	mul;ple	concurrent	flows	to	serve	mul;ple	

clients	at	the	same	;me	

User goes
out to lunch

Client 1 blocks
waiting for user
to type in data

Client 2 blocks
waiting to read
from server

Server blocks
waiting for
data from
Client 1

Client 1 Server Client 2
connect

accept connect

write call read

call read
write

call read
write ret read

call read

Carnegie Mellon

7 Bryant	and	O’Hallaron,	Computer	Systems:	A	Programmer’s	Perspec;ve,	Third	Edi;on	

Approaches	for	Wri9ng	Concurrent	Servers	
Allow	server	to	handle	mul;ple	clients	concurrently	
	

1.	Process-based	
§  Kernel	automa;cally	interleaves	mul;ple	logical	flows	
§  Each	flow	has	its	own	private	address	space	

2.	Event-based
§  Programmer	manually	interleaves	mul;ple	logical	flows	
§  All	flows	share	the	same	address	space	
§  Uses	technique	called	I/O	mul(plexing.		

3.	Thread-based	
§  Kernel	automa;cally	interleaves	mul;ple	logical	flows	
§  Each	flow	shares	the	same	address	space	
§  Hybrid	of	of	process-based	and	event-based.		

Carnegie Mellon

8 Bryant	and	O’Hallaron,	Computer	Systems:	A	Programmer’s	Perspec;ve,	Third	Edi;on	

Approach	#1:	Process-based	Servers	
¢  Spawn	separate	process	for	each	client	

client 1 server client 2

call connect
call accept

call read

ret accept call connect

call fgets
fork child 1

User goes out
to lunch

Client 1 blocks
waiting for
user to type in
data

call accept
ret accept

call fgets

write fork

call
read

child 2

write

call read

ret read
close

close

...

Child blocks
waiting for
data from
Client 1

Carnegie Mellon

9 Bryant	and	O’Hallaron,	Computer	Systems:	A	Programmer’s	Perspec;ve,	Third	Edi;on	

int main(int argc, char **argv) !
{ !
 int listenfd, connfd; !
 socklen_t clientlen; !
 struct sockaddr_storage clientaddr; !
!
 Signal(SIGCHLD, sigchld_handler); !
 listenfd = Open_listenfd(argv[1]); !
 while (1) { !
 clientlen = sizeof(struct sockaddr_storage); !
 connfd = Accept(listenfd, (SA *) &clientaddr, &clientlen); !
 if (Fork() == 0) { !
 Close(listenfd); /* Child closes its listening socket */!
 echo(connfd); /* Child services client */!
 Close(connfd); /* Child closes connection with client */!
 exit(0); /* Child exits */!
 } !
 Close(connfd); /* Parent closes connected socket (important!) */!
 } !
} !

Process-Based	Concurrent	Echo	Server	

echoserverp.c	

Carnegie Mellon

10 Bryant	and	O’Hallaron,	Computer	Systems:	A	Programmer’s	Perspec;ve,	Third	Edi;on	

Process-Based	Concurrent	Echo	Server	
(cont)	

void sigchld_handler(int sig) !
{ !
 while (waitpid(-1, 0, WNOHANG) > 0) !
 ; !
 return; !
}

§  Reap	all	zombie	children	

echoserverp.c	

Carnegie Mellon

11 Bryant	and	O’Hallaron,	Computer	Systems:	A	Programmer’s	Perspec;ve,	Third	Edi;on	

Concurrent	Server:	accept	Illustrated	
listenfd(3)

Client	
1.	Server	blocks	in	accept,	
wai4ng	for	connec4on	
request	on	listening	
descriptor	listenfd	

clientfd

Server	

listenfd(3)

Client	

clientfd

Server	
2.	Client	makes	connec4on	
request	by	calling	connect

Connec9on	
request	

listenfd(3)

Client	

clientfd

Server	
3.	Server	returns	connfd	from	
accept.	Forks	child	to	handle	
client.		Connec4on	is	now	
established	between	clientfd	
and	connfd	

Server	
Child	

connfd(4)

Carnegie Mellon

12 Bryant	and	O’Hallaron,	Computer	Systems:	A	Programmer’s	Perspec;ve,	Third	Edi;on	

Client 2 data

Process-based	Server	Execu9on	Model	

§  Each	client	handled	by	independent	child	process	
§  No	shared	state	between	them	
§  Both	parent	&	child	have	copies	of	listenfd	and	connfd	

§  Parent	must	close	connfd
§  Child	should	close	listenfd

Client 1
server

process

Client 2
server

process

Listening
server

process

Connection requests

Client 1 data

Carnegie Mellon

13 Bryant	and	O’Hallaron,	Computer	Systems:	A	Programmer’s	Perspec;ve,	Third	Edi;on	

Issues	with	Process-based	Servers	

¢  Listening	server	process	must	reap	zombie	children	
§  to	avoid	fatal	memory	leak	

¢  Parent	process	must	close	its	copy	of	connfd	
§  Kernel	keeps	reference	count	for	each	socket/open	file	
§  Ader	fork,	refcnt(connfd) = 2	
§  Connec;on	will	not	be	closed	un;l	refcnt(connfd) = 0	

Carnegie Mellon

14 Bryant	and	O’Hallaron,	Computer	Systems:	A	Programmer’s	Perspec;ve,	Third	Edi;on	

Pros	and	Cons	of	Process-based	Servers	

¢  +	Handle	mul9ple	connec9ons	concurrently	
¢  +	Clean	sharing	model	

§  descriptors	(no)	
§  file	tables	(yes)	
§  global	variables	(no)	

¢  +	Simple	and	straighZorward	
¢  –	Addi9onal	overhead	for	process	control	
¢  –	Nontrivial	to	share	data	between	processes	

§  Requires	IPC	(interprocess	communica;on)	mechanisms	
§  FIFO’s	(named	pipes),		System	V	shared	memory	and	semaphores	

Carnegie Mellon

15 Bryant	and	O’Hallaron,	Computer	Systems:	A	Programmer’s	Perspec;ve,	Third	Edi;on	

Approach	#2:	Event-based	Servers	

¢  Server	maintains	set	of	ac9ve	connec9ons	
§  Array	of	connfd’s	

¢  Repeat:	
§  Determine	which	descriptors	(connfd’s	or	listenfd)	have	pending	inputs	

§  e.g.,	using	select	or	epoll	func;ons	
§  arrival	of	pending	input	is	an	event	

§  If		listenfd	has	input,	then	accept	connec;on	
§  and	add	new	connfd	to	array	

§  Service	all	connfd’s	with	pending	inputs	

¢  Details	for	select-based	server	in	book	

Carnegie Mellon

16 Bryant	and	O’Hallaron,	Computer	Systems:	A	Programmer’s	Perspec;ve,	Third	Edi;on	

I/O	Mul9plexed	Event	Processing	

10

connfd’s

7
4
-1
-1
12
5
-1
-1
-1

0
1
2
3
4
5
6
7
8
9

Active

Inactive

Active

Never Used

listenfd = 3

10

connfd’s

7
4
-1
-1
12
5
-1
-1
-1

listenfd = 3
Ac9ve	Descriptors	 Pending	Inputs	

Read	and	service	

Carnegie Mellon

17 Bryant	and	O’Hallaron,	Computer	Systems:	A	Programmer’s	Perspec;ve,	Third	Edi;on	

Pros	and	Cons	of	Event-based	Servers	

¢  +	One	logical	control	flow	and	address	space.	
¢  +	Can	single-step	with	a	debugger.	
¢  +	No	process	or	thread	control	overhead.	

§  Design	of	choice	for	high-performance	Web	servers	and	search	
engines.	e.g.,	Node.js,	nginx,	Tornado	

	
¢  –	Significantly	more	complex	to	code	than	process-	or	thread-

based	designs.	
¢  –	Hard	to	provide	fine-grained	concurrency	

§  E.g.,	how	to	deal	with	par;al	HTTP	request	headers	
¢  – Cannot	take	advantage	of	mul9-core	

§  Single	thread	of	control	

Carnegie Mellon

18 Bryant	and	O’Hallaron,	Computer	Systems:	A	Programmer’s	Perspec;ve,	Third	Edi;on	

Approach	#3:	Thread-based	Servers	

¢  Very	similar	to	approach	#1	(process-based)	
§  	 …but	using	threads	instead	of	processes	

Carnegie Mellon

19 Bryant	and	O’Hallaron,	Computer	Systems:	A	Programmer’s	Perspec;ve,	Third	Edi;on	

Tradi9onal	View	of	a	Process	

¢  Process	=	process	context	+	code,	data,	and	stack	

Shared libraries

Run-time heap

0

Read/write data

Program context:
 Data registers
 Condition codes
 Stack pointer (SP)
 Program counter (PC)

Code, data, and stack

Read-only code/data

Stack SP

PC

brk

Process context

Kernel context:
 VM structures
 Descriptor table
 brk pointer

Carnegie Mellon

20 Bryant	and	O’Hallaron,	Computer	Systems:	A	Programmer’s	Perspec;ve,	Third	Edi;on	

Alternate	View	of	a	Process	

¢  Process	=	thread	+	code,	data,	and	kernel	context	

Shared libraries

Run-time heap

0

Read/write data Thread context:
 Data registers
 Condition codes
 Stack pointer (SP)
 Program counter (PC)

 Code, data, and kernel context

Read-only code/data

Stack SP

PC

brk

Thread (main thread)

Kernel context:
 VM structures
 Descriptor table
 brk pointer

Carnegie Mellon

21 Bryant	and	O’Hallaron,	Computer	Systems:	A	Programmer’s	Perspec;ve,	Third	Edi;on	

A	Process	With	Mul9ple	Threads	
¢  Mul9ple	threads	can	be	associated	with	a	process	

§  Each	thread	has	its	own	logical	control	flow		
§  Each	thread	shares	the	same	code,	data,	and	kernel	context	
§  Each	thread	has	its	own	stack	for	local	variables		

§  but	not	protected	from	other	threads	
§  Each	thread	has	its	own	thread	id	(TID)	

Thread 1 context:
 Data registers
 Condition codes
 SP1
 PC1

stack 1

Thread 1 (main thread)

shared libraries

run-time heap

0

read/write data

 Shared code and data

read-only code/data

Kernel context:
 VM structures
 Descriptor table
 brk pointer

Thread 2 context:
 Data registers
 Condition codes
 SP2
 PC2

stack 2

Thread 2 (peer thread)

Carnegie Mellon

22 Bryant	and	O’Hallaron,	Computer	Systems:	A	Programmer’s	Perspec;ve,	Third	Edi;on	

Logical	View	of	Threads	

¢  Threads	associated	with	process	form	a	pool	of	peers	
§  Unlike	processes	which	form	a	tree	hierarchy	

P0

P1

sh sh sh

foo

bar

T1

Process hierarchy Threads associated with process foo

T2
T4

T5 T3

shared code, data
and kernel context

Carnegie Mellon

23 Bryant	and	O’Hallaron,	Computer	Systems:	A	Programmer’s	Perspec;ve,	Third	Edi;on	

Concurrent	Threads	

¢  Two	threads	are	concurrent	if	their	flows	overlap	in	
9me	

¢  Otherwise,	they	are	sequen9al	

¢  Examples:	
§  Concurrent:	A	&	B,	A&C	
§  Sequen;al:	B	&	C	

Time

Thread A Thread B Thread C

Carnegie Mellon

24 Bryant	and	O’Hallaron,	Computer	Systems:	A	Programmer’s	Perspec;ve,	Third	Edi;on	

Concurrent	Thread	Execu9on	

¢  Single	Core	Processor	
§  Simulate	parallelism	by	
;me	slicing	

¢  Mul9-Core	Processor	
§  Can	have	true	
parallelism	

Time

Thread A Thread B Thread C Thread A Thread B Thread C

Run	3	threads	on	2	cores	

Carnegie Mellon

25 Bryant	and	O’Hallaron,	Computer	Systems:	A	Programmer’s	Perspec;ve,	Third	Edi;on	

Threads	vs.	Processes	
¢  How	threads	and	processes	are	similar	

§  Each	has	its	own	logical	control	flow	
§  Each	can	run	concurrently	with	others	(possibly	on	different	cores)	
§  Each	is	context	switched	

¢  How	threads	and	processes	are	different	
§  Threads	share	all	code	and	data	(except	local	stacks)	

§  Processes	(typically)	do	not	
§  Threads	are	somewhat	less	expensive	than	processes	

§  Process	control	(crea;ng	and	reaping)	twice	as	expensive	as	thread	
control	

§  Linux	numbers:	
–  ~20K	cycles	to	create	and	reap	a	process	
–  ~10K	cycles	(or	less)	to	create	and	reap	a	thread	

Carnegie Mellon

26 Bryant	and	O’Hallaron,	Computer	Systems:	A	Programmer’s	Perspec;ve,	Third	Edi;on	

Posix	Threads	(Pthreads)	Interface	
¢  Pthreads:	Standard	interface	for	~60	func9ons	that	

manipulate	threads	from	C	programs	
§  Crea;ng	and	reaping	threads	

§  pthread_create()

§  pthread_join()

§  Determining	your	thread	ID	
§  pthread_self()

§  Termina;ng	threads	
§  pthread_cancel()

§  pthread_exit()	
§  exit()	[terminates	all	threads]	,	RET [terminates	current	thread]	

§  Synchronizing	access	to	shared	variables	
§  pthread_mutex_init

§  pthread_mutex_[un]lock

Carnegie Mellon

27 Bryant	and	O’Hallaron,	Computer	Systems:	A	Programmer’s	Perspec;ve,	Third	Edi;on	

void *thread(void *vargp) /* thread routine */!
{ !
 printf("Hello, world!\n"); !
 return NULL; !
}

The	Pthreads	"hello,	world"	Program	
/* !
 * hello.c - Pthreads "hello, world" program !
 */!
#include "csapp.h" !
void *thread(void *vargp); !
!
int main() !
{ !
 pthread_t tid; !
 Pthread_create(&tid, NULL, thread, NULL); !
 Pthread_join(tid, NULL); !
 exit(0); !
} !

Thread attributes
(usually NULL)

Thread arguments
(void *p)

Return value
(void **p)

hello.c	

Thread ID

Thread routine

hello.c	

Carnegie Mellon

28 Bryant	and	O’Hallaron,	Computer	Systems:	A	Programmer’s	Perspec;ve,	Third	Edi;on	

Execu9on	of	Threaded	“hello,	world”	
Main thread

Peer thread

return NULL; Main thread waits for
peer thread to terminate

exit()
Terminates

main thread and
any peer threads

call Pthread_create()

call Pthread_join()

Pthread_join() returns

printf()

Peer thread
terminates

Pthread_create() returns

Carnegie Mellon

29 Bryant	and	O’Hallaron,	Computer	Systems:	A	Programmer’s	Perspec;ve,	Third	Edi;on	

Thread-Based	Concurrent	Echo	Server	
int main(int argc, char **argv) !
{ !
 int listenfd, *connfdp; !
 socklen_t clientlen; !
 struct sockaddr_storage clientaddr; !
 pthread_t tid; !
!
 listenfd = Open_listenfd(argv[1]); !
 while (1) { !

clientlen=sizeof(struct sockaddr_storage); !
connfdp = Malloc(sizeof(int)); !
*connfdp = Accept(listenfd, !

 (SA *) &clientaddr, &clientlen); !
Pthread_create(&tid, NULL, thread, connfdp); !

 } !
} ! echoservert.c	

§  malloc	of	connected	descriptor	necessary	to	avoid	
deadly	race	(later)	

Carnegie Mellon

30 Bryant	and	O’Hallaron,	Computer	Systems:	A	Programmer’s	Perspec;ve,	Third	Edi;on	

Thread-Based	Concurrent	Server	(cont)	

/* Thread routine */!
void *thread(void *vargp) !
{ !
 int connfd = *((int *)vargp); !
 Pthread_detach(pthread_self()); !
 Free(vargp); !
 echo(connfd); !
 Close(connfd); !
 return NULL; !
}

§  Run	thread	in	“detached”	mode.	
§  Runs	independently	of	other	threads	
§  Reaped	automa;cally	(by	kernel)	when	it	terminates	

§  Free	storage	allocated	to	hold	connfd.	
§  Close	connfd	(important!)

echoservert.c	

Carnegie Mellon

31 Bryant	and	O’Hallaron,	Computer	Systems:	A	Programmer’s	Perspec;ve,	Third	Edi;on	

Thread-based	Server	Execu9on	Model	

§  Each	client	handled	by	individual	peer	thread	
§  Threads	share	all	process	state	except	TID	
§  Each	thread	has	a	separate	stack	for	local	variables	

Client 1
server
peer

thread

Client 2
server
peer

thread

Listening
server

main thread

Connection requests

Client 1 data Client 2 data

Carnegie Mellon

32 Bryant	and	O’Hallaron,	Computer	Systems:	A	Programmer’s	Perspec;ve,	Third	Edi;on	

Issues	With	Thread-Based	Servers	

¢  Must	run	“detached”	to	avoid	memory	leak	
§  At	any	point	in	;me,	a	thread	is	either	joinable	or	detached	
§  Joinable	thread	can	be	reaped	and	killed	by	other	threads	

§  must	be	reaped	(with	pthread_join)	to	free	memory	resources	
§  Detached	thread	cannot	be	reaped	or	killed	by	other	threads	

§  resources	are	automa;cally	reaped	on	termina;on	
§  Default	state	is	joinable	

§  use	pthread_detach(pthread_self())	to	make	detached	

¢  Must	be	careful	to	avoid	unintended	sharing	
§  For	example,	passing	pointer	to	main	thread’s	stack	

§  Pthread_create(&tid, NULL, thread, (void *)&connfd);

¢  All	func9ons	called	by	a	thread	must	be	thread-safe	
§  (next	lecture)	

Carnegie Mellon

33 Bryant	and	O’Hallaron,	Computer	Systems:	A	Programmer’s	Perspec;ve,	Third	Edi;on	

Pros	and	Cons	of	Thread-Based	Designs	

¢  +	Easy	to	share	data	structures	between	threads	
§  e.g.,	logging	informa;on,	file	cache	

¢  +	Threads	are	more	efficient	than	processes	

¢  –	Uninten9onal	sharing	can	introduce	subtle	and	hard-
to-reproduce	errors!	
§  The	ease	with	which	data	can	be	shared	is	both	the	greatest	
strength	and	the	greatest	weakness	of	threads	

§  Hard	to	know	which	data	shared	&	which	private	
§  Hard	to	detect	by	tes;ng	

§  Probability	of	bad	race	outcome	very	low	
§  But	nonzero!	

§  Future	lectures	

Carnegie Mellon

34 Bryant	and	O’Hallaron,	Computer	Systems:	A	Programmer’s	Perspec;ve,	Third	Edi;on	

Summary:	Approaches	to	Concurrency	

¢  Process-based	
§  Hard	to	share	resources:	Easy	to	avoid	unintended	sharing	
§  High	overhead	in	adding/removing	clients	

¢  Event-based	
§  Tedious	and	low	level	
§  Total	control	over	scheduling	
§  Very	low	overhead	
§  Cannot	create	as	fine	grained	a	level	of	concurrency	
§  Does	not	make	use	of	mul;-core	

¢  Thread-based	
§  Easy	to	share	resources:	Perhaps	too	easy	
§  Medium	overhead	
§  Not	much	control	over	scheduling	policies	
§  Difficult	to	debug	

§  Event	orderings	not	repeatable	

