Cache Memories

15-213: Introduction to Computer Systems
12th Lecture, Oct. 8, 2015

Instructors:
Randal E. Bryant and David R. O’Hallaron
Today

- Cache memory organization and operation
- Performance impact of caches
 - The memory mountain
 - Rearranging loops to improve spatial locality
 - Using blocking to improve temporal locality
Example Memory Hierarchy

- **L0:** CPU registers hold words retrieved from the L1 cache.
- **L1:** L1 cache holds cache lines retrieved from the L2 cache.
- **L2:** L2 cache holds cache lines retrieved from L3 cache.
- **L3:** L3 cache holds cache lines retrieved from main memory.
- **L4:** Main memory holds disk blocks retrieved from local disks.
- **L5:** Local disks hold files retrieved from disks on remote servers.
- **L6:** Remote secondary storage (e.g., Web servers).

Legend:
- Smaller, faster, and costlier (per byte) storage devices.
- Larger, slower, and cheaper (per byte) storage devices.
General Cache Concept

Cache

Memory

Smaller, faster, more expensive memory caches a subset of the blocks

Data is copied in block-sized transfer units

Larger, slower, cheaper memory viewed as partitioned into “blocks”
Cache Memories

- **Cache memories** are small, fast SRAM-based memories managed automatically in hardware
 - Hold frequently accessed blocks of main memory
- **CPU looks first for data in cache**
- **Typical system structure:**

![Diagram of computer system components](image-url)
General Cache Organization (S, E, B)

- \(E = 2^e \) lines per set
- \(S = 2^s \) sets
- \(B = 2^b \) bytes per cache block (the data)

Cache size:
\[
C = S \times E \times B \text{ data bytes}
\]
Cache Read

\[E = 2^e \text{ lines per set} \]

\[S = 2^s \text{ sets} \]

\[B = 2^b \text{ bytes per cache block (the data)} \]

- Locate set
- Check if any line in set has matching tag
- Yes + line valid: hit
- Locate data starting at offset

Address of word:

\[\text{tag} \quad \text{set index} \quad \text{block offset} \]

data begins at this offset

\[\text{valid bit} \]

Bryant and O'Hallaron, Computer Systems: A Programmer's Perspective, Third Edition
Example: Direct Mapped Cache (E = 1)

Direct mapped: One line per set
Assume: cache block size 8 bytes

\[S = 2^s \text{ sets} \]

Address of int:
\[\begin{array}{c|c|c}
\text{t bits} & 0...1 & 100 \\
\end{array} \]
Example: Direct Mapped Cache (E = 1)

Direct mapped: One line per set
Assume: cache block size 8 bytes

```
Address of int: 0...01 100

valid? + match: assume yes = hit

t bits

0 1 2 3 4 5 6 7

tag

v

block offset
```
Example: Direct Mapped Cache (E = 1)

Direct mapped: One line per set
Assume: cache block size 8 bytes

If tag doesn’t match: old line is evicted and replaced
Direct-Mapped Cache Simulation

M=16 bytes (4-bit addresses), B=2 bytes/block, S=4 sets, E=1 Blocks/set

Address trace (reads, one byte per read):

0 [0000₂], miss
1 [0001₂], hit
7 [0111₂], miss
8 [1000₂], miss
0 [0000₂] miss

<table>
<thead>
<tr>
<th>v</th>
<th>Tag</th>
<th>Block</th>
</tr>
</thead>
<tbody>
<tr>
<td>Set 0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Set 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Set 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Set 3</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>
E-way Set Associative Cache (Here: E = 2)

E = 2: Two lines per set
Assume: cache block size 8 bytes

Address of short int:

```
0...01 100
```

Find set
E-way Set Associative Cache (Here: E = 2)

E = 2: Two lines per set
Assume: cache block size 8 bytes

Address of short int:

compare both

valid? + match: yes = hit

block offset

v tag 0 1 2 3 4 5 6 7

v tag 0 1 2 3 4 5 6 7

t bits 0...01 100
E-way Set Associative Cache (Here: \(E = 2 \))

\(E = 2 \): Two lines per set
Assume: cache block size 8 bytes

Address of short int:

\[
t \text{ bits} \quad 0...01 \quad 100
\]

valid? + match: yes = hit

Compare both

短整型（2 字节）在这里

No match:

- One line in set is selected for eviction and replacement
- Replacement policies: random, least recently used (LRU), ...

2-Way Set Associative Cache Simulation

M=16 byte addresses, B=2 bytes/block, S=2 sets, E=2 blocks/set

Address trace (reads, one byte per read):
- 0 \[0000_2\], miss
- 1 \[0001_2\], hit
- 7 \[0111_2\], miss
- 8 \[1000_2\], miss
- 0 \[0000_2\], hit

<table>
<thead>
<tr>
<th>v</th>
<th>Tag</th>
<th>Block</th>
</tr>
</thead>
<tbody>
<tr>
<td>Set 0</td>
<td>1</td>
<td>00</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>10</td>
</tr>
<tr>
<td>Set 1</td>
<td>1</td>
<td>01</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>
What about writes?

- **Multiple copies of data exist:**
 - L1, L2, L3, Main Memory, Disk

- **What to do on a write-hit?**
 - **Write-through** (write immediately to memory)
 - **Write-back** (defer write to memory until replacement of line)
 - Need a dirty bit (line different from memory or not)

- **What to do on a write-miss?**
 - **Write-allocate** (load into cache, update line in cache)
 - Good if more writes to the location follow
 - **No-write-allocate** (writes straight to memory, does not load into cache)

- **Typical**
 - Write-through + No-write-allocate
 - Write-back + Write-allocate
Intel Core i7 Cache Hierarchy

Processor package

Core 0

Regs

L1 d-cache

L1 i-cache

L2 unified cache

Core 3

Regs

L1 d-cache

L1 i-cache

L2 unified cache

... L3 unified cache (shared by all cores)

Main memory

L1 i-cache and d-cache:
32 KB, 8-way, Access: 4 cycles

L2 unified cache:
256 KB, 8-way, Access: 10 cycles

L3 unified cache:
8 MB, 16-way, Access: 40-75 cycles

Block size: 64 bytes for all caches.
Cache Performance Metrics

- **Miss Rate**
 - Fraction of memory references not found in cache (misses / accesses) = 1 – hit rate
 - Typical numbers (in percentages):
 - 3-10% for L1
 - can be quite small (e.g., < 1%) for L2, depending on size, etc.

- **Hit Time**
 - Time to deliver a line in the cache to the processor
 - includes time to determine whether the line is in the cache
 - Typical numbers:
 - 4 clock cycle for L1
 - 10 clock cycles for L2

- **Miss Penalty**
 - Additional time required because of a miss
 - typically 50-200 cycles for main memory (Trend: increasing!)
Let’s think about those numbers

- **Huge difference between a hit and a miss**
 - Could be 100x, if just L1 and main memory

- **Would you believe 99% hits is twice as good as 97%?**
 - Consider:
 - cache hit time of 1 cycle
 - miss penalty of 100 cycles
 - Average access time:
 - 97% hits: 1 cycle + 0.03 * 100 cycles = 4 cycles
 - 99% hits: 1 cycle + 0.01 * 100 cycles = 2 cycles

- **This is why “miss rate” is used instead of “hit rate”**
Writing Cache Friendly Code

- **Make the common case go fast**
 - Focus on the inner loops of the core functions

- **Minimize the misses in the inner loops**
 - Repeated references to variables are good (*temporal locality*)
 - Stride-1 reference patterns are good (*spatial locality*)

Key idea: Our qualitative notion of locality is quantified through our understanding of cache memories
Today

- Cache organization and operation
- Performance impact of caches
 - The memory mountain
 - Rearranging loops to improve spatial locality
 - Using blocking to improve temporal locality
The Memory Mountain

- **Read throughput (read bandwidth)**
 - Number of bytes read from memory per second (MB/s)

- **Memory mountain:** Measured read throughput as a function of spatial and temporal locality.
 - Compact way to characterize memory system performance.
Memory Mountain Test Function

```c
long data[MAXELEMS]; /* Global array to traverse */

/* test - Iterate over first "elems" elements of array “data” with stride of "stride", using 4x4 loop unrolling. */
int test(int elems, int stride) {
    long i, sx2=stride*2, sx3=stride*3, sx4=stride*4;
    long acc0 = 0, acc1 = 0, acc2 = 0, acc3 = 0;
    long length = elems, limit = length - sx4;

    /* Combine 4 elements at a time */
    for (i = 0; i < limit; i += sx4) {
        acc0 = acc0 + data[i];
        acc1 = acc1 + data[i+stride];
        acc2 = acc2 + data[i+sx2];
        acc3 = acc3 + data[i+sx3];
    }

    /* Finish any remaining elements */
    for (; i < length; i++) {
        acc0 = acc0 + data[i];
    }

    return ((acc0 + acc1) + (acc2 + acc3));
}
```

Call `test()` with many combinations of `elems` and `stride`.

For each `elems` and `stride`:

1. Call `test()` once to warm up the caches.
2. Call `test()` again and measure the read throughput (MB/s)
The Memory Mountain

Core i7 Haswell
2.1 GHz
32 KB L1 d-cache
256 KB L2 cache
8 MB L3 cache
64 B block size

Aggressive prefetching

Ridges of temporal locality

Slopes of spatial locality

Read throughput (MB/s)

Stride (x8 bytes)

Size (bytes)
Today

- Cache organization and operation
- Performance impact of caches
 - The memory mountain
 - Rearranging loops to improve spatial locality
 - Using blocking to improve temporal locality
Matrix Multiplication Example

Description:
- Multiply N x N matrices
- Matrix elements are doubles (8 bytes)
- \(O(N^3)\) total operations
- N reads per source element
- N values summed per destination
 - but may be able to hold in register

```c
/* ijk */
for (i=0; i<n; i++) { 
  for (j=0; j<n; j++) { 
    sum = 0.0; 
    for (k=0; k<n; k++) 
      sum += a[i][k] * b[k][j];
    c[i][j] = sum; 
  }
}
```

Variable `sum` held in register

`matmult/mm.c`
Miss Rate Analysis for Matrix Multiply

- **Assume:**
 - Block size = 32B (big enough for four doubles)
 - Matrix dimension (N) is very large
 - Approximate 1/N as 0.0
 - Cache is not even big enough to hold multiple rows

- **Analysis Method:**
 - Look at access pattern of inner loop
Layout of C Arrays in Memory (review)

- C arrays allocated in row-major order
 - each row in contiguous memory locations

- Stepping through columns in one row:
 - for (i = 0; i < N; i++)
 - sum += a[0][i];
 - accesses successive elements
 - if block size (B) > sizeof(a_{ij}) bytes, exploit spatial locality
 - miss rate = sizeof(a_{ij}) / B

- Stepping through rows in one column:
 - for (i = 0; i < n; i++)
 - sum += a[i][0];
 - accesses distant elements
 - no spatial locality!
 - miss rate = 1 (i.e. 100%)
Matrix Multiplication (ijk)

```c
/* ijk */
for (i=0; i<n; i++) {
    for (j=0; j<n; j++) {
        sum = 0.0;
        for (k=0; k<n; k++)
            sum += a[i][k] * b[k][j];
        c[i][j] = sum;
    }
}
```

Inner loop:
- **Row-wise**
- **A**

- **Column-wise**
- **B**

- **Fixed**
- **C**

Misses per inner loop iteration:

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Misses</td>
<td>0.25</td>
<td>1.0</td>
<td>0.0</td>
</tr>
</tbody>
</table>
Matrix Multiplication (jik)

```c
/* jik */
for (j=0; j<n; j++) {
    for (i=0; i<n; i++) {
        sum = 0.0;
        for (k=0; k<n; k++)
            sum += a[i][k] * b[k][j];
        c[i][j] = sum
    }
}
```

Misses per inner loop iteration:

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.25</td>
<td>1.0</td>
<td>0.0</td>
</tr>
</tbody>
</table>
Matrix Multiplication (kij)

/* kij */
for (k=0; k<n; k++) {
 for (i=0; i<n; i++) {
 r = a[i][k];
 for (j=0; j<n; j++)
 c[i][j] += r * b[k][j];
 }
}

Misses per inner loop iteration:

\[
\begin{array}{ccc}
 & A & B & C \\
 0.0 & 0.25 & 0.25 \\
\end{array}
\]
Matrix Multiplication (ikj)

/* ikj */
for (i=0; i<n; i++) {
 for (k=0; k<n; k++) {
 r = a[i][k];
 for (j=0; j<n; j++)
 c[i][j] += r * b[k][j];
 }
}

Inner loop:

Misses per inner loop iteration:

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.0</td>
<td>0.25</td>
<td>0.25</td>
</tr>
</tbody>
</table>
Matrix Multiplication (jki)

```c
/* jki */
for (j=0; j<n; j++) {
    for (k=0; k<n; k++) {
        r = b[k][j];
        for (i=0; i<n; i++)
            c[i][j] += a[i][k] * r;
    }
}
```

Misses per inner loop iteration:

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1.0</td>
<td>0.0</td>
<td>1.0</td>
</tr>
</tbody>
</table>
Matrix Multiplication (kji)

/* kji */
for (k=0; k<n; k++) {
 for (j=0; j<n; j++) {
 r = b[k][j];
 for (i=0; i<n; i++)
 c[i][j] += a[i][k] * r;
 }
}

Misses per inner loop iteration:

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1.0</td>
<td>0.0</td>
<td>1.0</td>
</tr>
</tbody>
</table>
Summary of Matrix Multiplication

for (i=0; i<n; i++) {
 for (j=0; j<n; j++) {
 sum = 0.0;
 for (k=0; k<n; k++)
 sum += a[i][k] * b[k][j];
 c[i][j] = sum;
 }
}

for (k=0; k<n; k++) {
 for (i=0; i<n; i++) {
 r = a[i][k];
 for (j=0; j<n; j++)
 c[i][j] += r * b[k][j];
 }
}

for (j=0; j<n; j++) {
 for (k=0; k<n; k++) {
 r = b[k][j];
 for (i=0; i<n; i++)
 c[i][j] += a[i][k] * r;
 }
}

ijk (& jik):
• 2 loads, 0 stores
• misses/iter = 1.25

kij (& ikj):
• 2 loads, 1 store
• misses/iter = 0.5

jki (& kji):
• 2 loads, 1 store
• misses/iter = 2.0
Core i7 Matrix Multiply Performance

Cycles per inner loop iteration vs. Array size (n)

- jki / kji
- ijk / jik
- kij / ikj
Today

- Cache organization and operation
- Performance impact of caches
 - The memory mountain
 - Rearranging loops to improve spatial locality
 - Using blocking to improve temporal locality
Example: Matrix Multiplication

c = (double *) calloc(sizeof(double), n*n);

/* Multiply n x n matrices a and b */
void mmm(double *a, double *b, double *c, int n) {
 int i, j, k;
 for (i = 0; i < n; i++)
 for (j = 0; j < n; j++)
 for (k = 0; k < n; k++)
 c[i*n + j] += a[i*n + k] * b[k*n + j];
}
Cache Miss Analysis

- **Assume:**
 - Matrix elements are doubles
 - Cache block = 8 doubles
 - Cache size $C \ll n$ (much smaller than n)

- **First iteration:**
 - $n/8 + n = 9n/8$ misses
 - Afterwards *in cache:* (schematic)
Cache Miss Analysis

- **Assume:**
 - Matrix elements are doubles
 - Cache block = 8 doubles
 - Cache size C << n (much smaller than n)

- **Second iteration:**
 - Again: $n/8 + n = 9n/8$ misses

- **Total misses:**
 - $9n/8 \times n^2 = (9/8) \times n^3$
Carnegie Mellon

41

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective

Blocked Matrix Multiplication

c = (double *) calloc(sizeof(double), n*n);

/* Multiply n x n matrices a and b */
void mmm(double *a, double *b, double *c, int n) {
 int i, j, k;
 for (i = 0; i < n; i+=B)
 for (j = 0; j < n; j+=B)
 for (k = 0; k < n; k+=B)
 /* B x B mini matrix multiplications */
 for (i1 = i; i1 < i+B; i++)
 for (j1 = j; j1 < j+B; j++)
 for (k1 = k; k1 < k+B; k++)
 c[i1*n+j1] += a[i1*n + k1]*b[k1*n + j1];
}

matmult/bmm.c

\[\text{Block size B} \times \text{B} \]
Cache Miss Analysis

Assume:
- Cache block = 8 doubles
- Cache size $C << n$ (much smaller than n)
- Three blocks fit into cache: $3B^2 < C$

First (block) iteration:
- $B^2/8$ misses for each block
- $2n/B \times B^2/8 = nB/4$ (omitting matrix c)
- Afterwards in cache (schematic)
Cache Miss Analysis

Assume:
- Cache block = 8 doubles
- Cache size $C \ll n$ (much smaller than n)
- Three blocks fit into cache: $3B^2 < C$

Second (block) iteration:
- Same as first iteration
- $2n/B \times B^2/8 = nB/4$

Total misses:
- $nB/4 \times (n/B)^2 = n^3/(4B)$
Blocking Summary

- No blocking: $(9/8) \times n^3$
- Blocking: $1/(4B) \times n^3$

- Suggest largest possible block size B, but limit $3B^2 < C!$

- Reason for dramatic difference:
 - Matrix multiplication has inherent temporal locality:
 - Input data: $3n^2$, computation $2n^3$
 - Every array elements used $O(n)$ times!
 - But program has to be written properly
Cache Summary

- Cache memories can have significant performance impact

- You can write your programs to exploit this!
 - Focus on the inner loops, where bulk of computations and memory accesses occur.
 - Try to maximize spatial locality by reading data objects with sequentially with stride 1.
 - Try to maximize temporal locality by using a data object as often as possible once it’s read from memory.