Carnegie Mellon

Processes, Signals, 1/0, Shell lab

15-213: Introduction to Computer Systems
Recitation 9: Monday, October 20t", 2014

Sajjan

Carnegie Mellon

Agenda

m Processes

m Signals

m /O Intro

m Shell Lab General

Carnegie Mellon

Processes

m Aninstance of an executing program
m Abstraction provided by the operating system

m Properties
e Private memory

- No two processes share memory, registers, etc.

o Some state is shared, such as open file table
o Have a process ID and process group ID

- pid,pgid
« Become zombies when finished running

Carnegie Mellon

Processes

m Four basic process control function families:
= fork()

= exec()
= And other variants such as execve()
= exit()
= wait()
= And variants like waitpid()
m Standard on all UNIX-based systems

m Don’t be confused:
Fork(), Exit(), Wait() are all wrappers provided by CS:APP

Carnegie Mellon

Processes

m int fork(void)

= creates a new process (child process) that is identical to the calling
process (parent process)

= OS creates an exact duplicate of parent’s state:
= Virtual address space (memory), including heap and stack
= Registers, except for the return value (%eax/%rax)

= File descriptors of files are copied into child process
= Result 2 Equal but separate state

" Fork is interesting (and often confusing) because
it is called once but returns twice

Carnegie Mellon

Processes

m int fork(void)

= returns O to the child process
= returns child’s pid (process id) to the parent process
= Usually used like:

pid_t pid = fork();

if (pid == 0) {
// pid 1s @ so we can detect child
printf("hello from child\n");

}

else {
// pid = child’s assigned pid
printf("hello from parent\n");

Carnegie Mellon

Processes

m int exec()
= Replaces the current process’s state and context
= But keeps PID, open files, and signal context
" Provides a way to load and run another program

= Replaces the current running memory image with that of new
program

= Set up stack with arguments and environment variables
= Start execution at the entry point
= Never returns on successful execution

" The newly loaded program’s perspective: as if the previous
program has not been run before

= More useful variant is int execve()
" More information? man 3 exec

Carnegie Mellon

Processes

m void exit(int status)
= Normally return with status O (other numbers indicate an error)
= Terminates the current process

= OS frees resources such as heap memory and open file descriptors
and so on...

= Reduce to a zombie state

= Must wait to be reaped by the parent process (or the init
process if the parent died)

= Signal is sent to the parent process notifying of death
= Reaper can inspect the exit status

Carnegie Mellon

Processes

m int wait(int *child status)
= suspends current process until one of its children terminates
= return value is the pid of the child process that terminated
= When wait returns a pid > 0, child process has been reaped
= All child resources freed

= if child_status != NULL, then the object it points to will be set to a
status indicating why the child process terminated

" More useful variantis int waitpid()
" For details: man 2 wait

Carnegie Mellon

Process Examples

m What are the possible
output (assuming fork

pid t child pid = fork(); succeeds) ?
if (child pid == 0){ " Child!
/* only child comes here */ Parent!
I (“Child 1 \n®) - = Parent!
printf(“Child!\n”); Child!
exit(0);
} :
else{ m How to get the child to

always print first?

printf(“Parent!\n”);
}

10

Process Examples

int status;
pid_t child _pid = fork();

if (child_pid == 0){

}

/* only child comes here */
printf(“Child!\n”);

exit(9);

else{

}

waitpid(child pid, &status, 0);

printf(“Parent!\n”);

Carnegie Mellon

Waits til the child has
terminated.
Parent can inspect
exit status of
child using ‘status’
= WEXITSTATUS(status)

Output always:
Child!
Parent!

1"

Carnegie Mellon

Signals

m Asignalis a small message that notifies a process that an event
of some type has occurred in the system
= akin to exceptions and interrupts (asynchronous)

= sent from the kernel (sometimes at the request of another process) to a
process

= signal type is identified by small integer ID’s (1-30)
= only information in a signal is its ID and the fact that it arrived

ID Name Default Action Corresponding Event

2 SIGINT Terminate Interrupt (e.q., ctl-c from keyboard)

9 SIGKILL Terminate Kill program (cannot override or ignore)
11 SIGSEGV Terminate & Dump Segmentation violation
14 SIGALRM Terminate Timer signal

17 SIGCHLD Ignore Child stopped or terminated

12

Signals

m Kernel sends (delivers) a signal to a destination process by
updating some state in the context of the destination

process

m Kernel sends a signal for one of the following reasons:

= Kernel has detected a system event such as Ctrl-C (SIGINT), divide-
by-zero (SIGFPE), or the termination of a child process (SIGCHLD)

= Another program called the kill() function
" The user used a kill utility

13

Signals

m A destination process receives a signal when it is forced by
the kernel to react in some way to the delivery of the signal

m Receiving a signal is non-queuing
" There is only one bit in the context per signal
= Receiving 1 or 300 SIGINTs looks the same to the process

m Signals are received at a context switch

m Three possible ways to react:
= Jgnore the signal (do nothing)
= Terminate the process (with optional core dump)

= Catch the signal by executing a user-level function called signal
handler

= Akin to a hardware exception handler being called in response

to an asynchronous interrupt
14

Signals

m A destination process receives a signal when it is forced by
the kernel to react in some way to the delivery of the signal

m Blocking signals

= Sometimes code needs to run through a section that can’t be
interrupted

" |Implemented with sigprocmask()
m Waiting for signals

= Sometimes, we want to pause execution until we get a specific
signal

" |Implemented with sigsuspend()

m Can’t modify behavior of SIGKILL and SIGSTOP

15

Signals

m Signal handlers
" Can be installed to run when a signal is received
" The formis void handler(int signum){ .. }
= Separate flow of control in the same process
= Resumes normal flow of control upon returning

= Can be called anytime when the appropriate signal is
fired

16

Carnegie Mellon

Signal Examples
m Every process belongs to exactly one process group
m Process groups can be used to distribute signals easily

m A forked process becomes a member of the parent’s
process group

pid=20 id=
T pid=40
Pgid=20 pgid=40
Background Background
process group 32 process group 40
getpgrp ()
pid=21 pid=22 Return process group of current process
pgid=20 pgid=20 .
setpgid()
Foreground

Change process group of a process
process group 20

17

Carnegie Mellon

Signal Examples

// sigchld handler installed void sigchld handler(int signum)
{
pid_t child _pid = fork(); int status;
if (child pid == 0){ pid t child pid =
/* child comes here */ waitpid(-1, &status, WNOHANG);
execve(....); if (WIFEXITED(status))
} remove_job(child _pid);
else{ }

add_job(child_pid);

}
m Does add_job or remove _job() come first?

m Where can we block signals in this code to guarantee
correct execution?

18

Carnegie Mellon

Signal Examples

// sigchld ha r_installed I void sigchld handler(int signum)
Block SIGCHLD

pid t child p oS int status;
if (child pid == ,0){ pid t child pid =
/* child co here */ waitpid(-1, &status, WNOHANG);
Unblock SIGCHLD
execve(....); if (WIFEXITED(status))
} remove_job(child _pid);
else{ }
add_job(ch;
Unblock SIGCHLD
} | |

m Does add_job or remove _job() come first?

m Where can we block signals in this code to guarantee
correct execution?

19

Unix 1/0

m Unix processes use descriptors to reference i/o streams.

m File descriptors are unsigned integers obtained from open
and socket system calls.

m dup, dup2 system calls are used to duplicate a file
descriptor.

m int dup2(int oldfd, int newfd)
= newfd becomes a copy of oldfd

= Read/write on newfd will access the file corresponding to oldfd

m Every process starts with 3 file descriptors by default
= 0:STDIN
= 1:STDOUT
= 2:STDERR

20

Carnegie Mellon

Shell Lab

m Before starting the lab read chapter 8 and chapter 10 from
the book. Make sure you understand every line from
chapter 8.

m Read the code we’ve given you

" There’s a lot of stuff you don’t need to write yourself; we gave you
quite a few helper functions

" |t's a good example of the code we expect from you!

m Don’t be afraid to write your own helper functions; this is
not a simple assignment

21

Shell Lab

m Please do not use sleep() to solve synchronization issues.

m Read man pages. You may find the following functions

helpful:

= sigemptyset()
" sigaddset()

" sigprocmask()
= sigsuspend()
= waitpid()

= open()

" dup2()

= setpgid()

= kill()

22

Shell lab

m Don’t forget to close any open file descriptors after call to
dup?2

m Make sure you have error checking code for any system
call or function you write

m Hazards

= Race conditions
= Hard to debug so start early (and think carefully)

= Reaping zombies
= Race conditions
= Handling signals correctly

= Waiting for foreground job
= Think carefully about what the right way to do this is

23

Thank you

24

Extra Slides

25

Carnegie Mellon

Processes

m Four basic States
" Running
= Executing instructions on the CPU
= Number bounded by number of CPU cores
= Runnable
= Waiting to be running
= Blocked
= Waiting for an event, maybe input from STDIN
= Not runnable
= Zombie
= Terminated, not yet reaped

26

Carnegie Mellon

Process Examples

m Unix Process Hierarchy: [0]

et >
Corandetia > CGrandetita

27

Carnegie Mellon

Process Examples

int status; m An example of something

pid t child pid = fork(); useful.
char* argv[] = {“/bin/1s”, “-1”, NULL};) .)
char* env[] = {.., NULL}; <= m Why is the first arg “/bin/Is”?

if (child pid == 0){
/* only child comes here */ m Will child reach here?

execve(“/bin/1s”, argv, env);

/* will child reach here? */

}

else{
waitpid(child_pid, &status, 0);

.. parent continue execution..

}

28

Signal Examples

Signal delivered —>

Signal received —>

Process A

curr

Process B

Carnegie Mellon

user code (main)

kernel code } context switch
user code (main)

kernel code } context switch
user code (handler)

kernel code

user code (main)

29

