Cache Lab Implementation and Blocking

Aakash Sabharwal

Section J

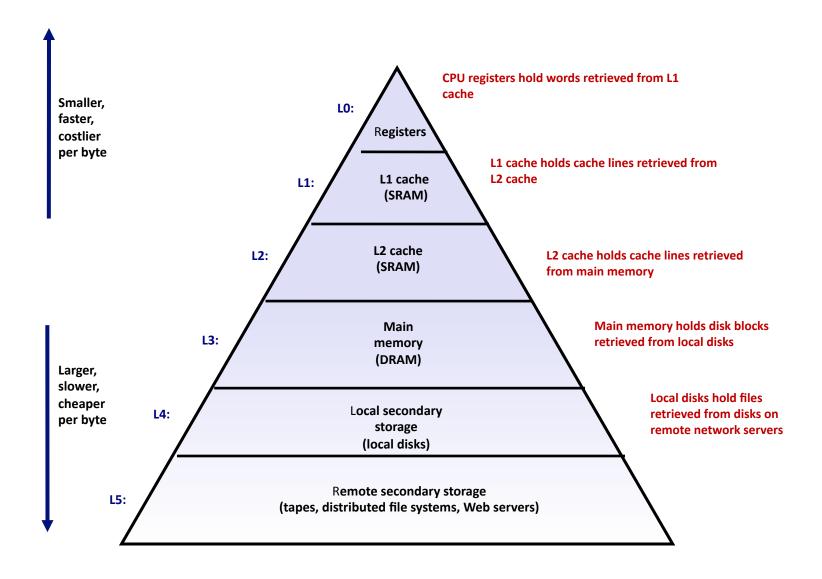
October. 7th, 2013

Welcome to the World of Pointers!

Class Schedule

Cache Lab

- Due Thursday.
- Start now (if you haven't already)


Exam Soon!

- Start doing practice problems.
- Wed Oct 16th Sat Oct 19
- 10 days

Outline

- Schedule
- Memory organization
- Caching
 - Different types of locality
 - Cache organization
- Cachelab
 - Part (a) Building Cache Simulator
 - Part (b) Efficient Matrix Transpose

Memory Hierarchy

Memory Hierarchy

Registers

- Local Secondary storage
- Remote Secondary storage

SRAM vs DRAM tradeoff

SRAM (cache)

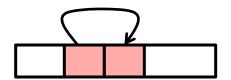
- Faster (L1 cache: 1 CPU cycle)
- Smaller (Kilobytes (L1) or Megabytes (L2))
- More expensive and "energy-hungry"

DRAM (main memory)

- Relatively slower (hundreds of CPU cycles)
- Larger (Gigabytes)
- Cheaper

Locality

Temporal locality


 Recently referenced items are likely to be referenced again in the near future

 After accessing address X in memory, save the bytes in cache for future access

Spatial locality

 Items with nearby addresses tend to be referenced close together in time

 After accessing address X, save the block of memory around X in cache for future access

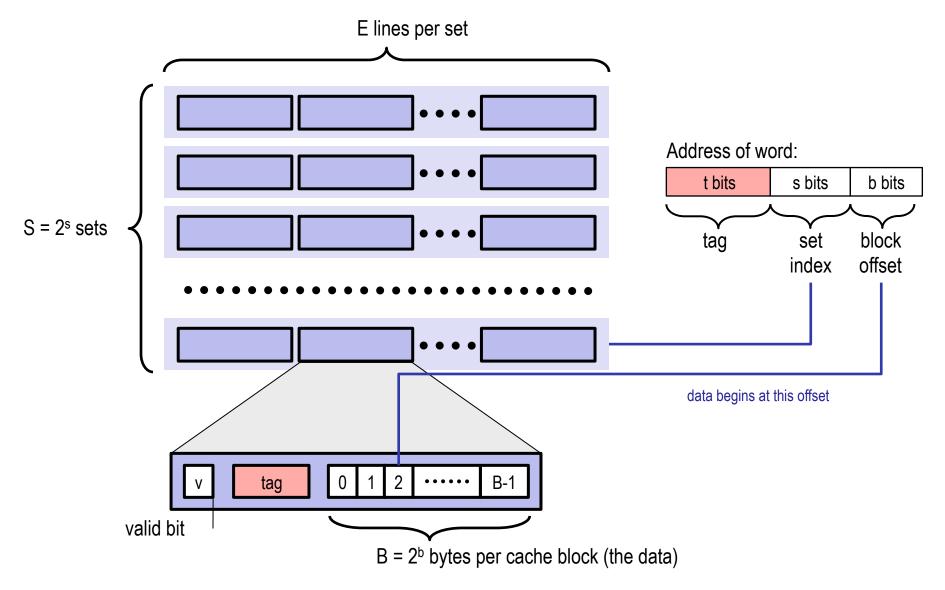
Memory Address

■ 64-bit on shark machines

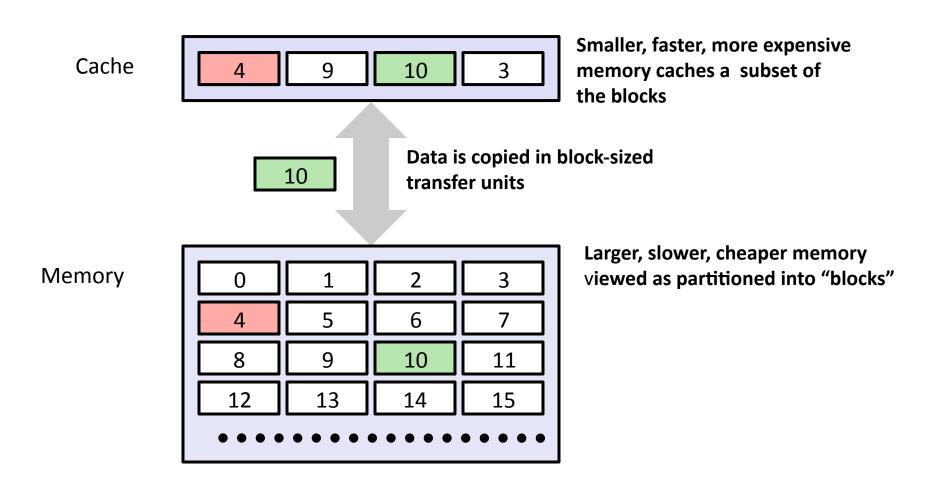
memory address

tag set index block offset

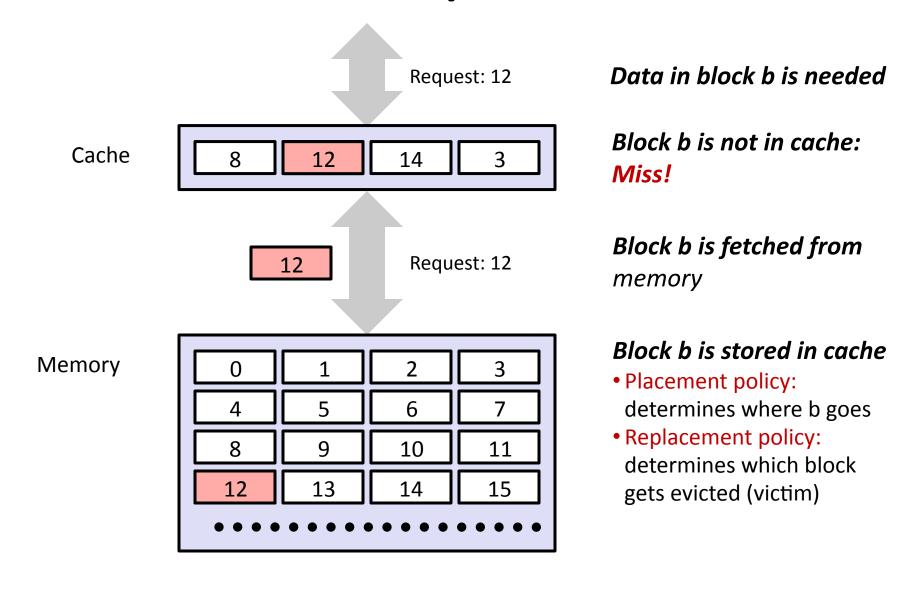
Block offset: b bits


Set index: s bits

■ Tag Bits: Address Size – b – s


Cache

- A cache is a set of 2[^]s cache sets
- A cache set is a set of E cache lines
 - E is called associativity
 - If E=1, it is called "direct-mapped"
- Each cache line stores a block
 - Each block has B = 2^h bytes
- Total Capacity = S*B*E


Visual Cache Terminology

General Cache Concepts

General Cache Concepts: Miss

General Caching Concepts: Types of Cache Misses

■ Cold (compulsory) miss

The first access to a block has to be a miss.

Conflict miss

- Conflict misses occur when the level k cache is large enough, but multiple data objects all map to the same level k block
 - E.g., Referencing blocks 0, 8, 0, 8, 0, 8, ... would miss every time

Capacity miss

 Occurs when the set of active cache blocks (working set) is larger than the cache

Cachelab

- Part (a) Building a cache simulator
- Part (b) Optimizing matrix transpose

Part (a) Cache simulator

- A cache simulator is NOT a cache!
 - Memory contents NOT stored
 - Block offsets are NOT used the b bits in your address don't matter.
 - Simply count hits, misses, and evictions
- Your cache simulator need to work for different s, b, E, given at run time.
- Use LRU Least Recently Used replacement policy
 - Evict the least recently used block from the cache to make room for the next block.
 - Queues ? Time Stamps ?

Cache simulator: Hints

- A cache is just 2D array of cache lines:
 - struct cache_line cache[S][E];
 - $S = 2^s$, is the number of sets
 - E is associativity
- Each cache_line has:
 - Valid bit
 - Tag
 - LRU counter (only if you are not using a queue)

Cache Lab Implementation: getopt

- getopt() automates parsing elements on the unix command line If function declaration is missing
 - Typically called in a loop to retrieve arguments
 - Its return value is stored in a local variable
 - When getopt() returns -1, there are no more options
- ■To use getopt, your program must include the header file unistd.h
- ■If not running on the shark machines then you will need #include <getopt.h>.
 - Better Advice: Run on Shark Machines!

getopt

- ■A switch statement is used on the local variable holding the return value from getopt()
 - Each command line input case can be taken care of separately
 - "optarg" is an important variable it will point to the value of the option argument
- Think about how to handle invalid inputs

getopt Example

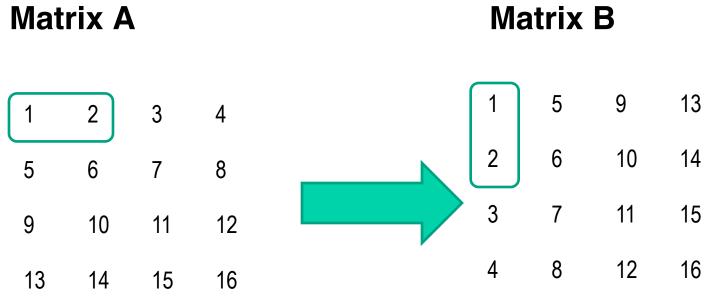
```
int main(int argc, char** argv){
    int opt, x,y;
   /* looping over arguments */
   while(-1!= (opt = getopt(argc, argv, "x:y:"))){
        /* determine which argument it's processing */
        switch(opt) {
            case 'x':
                x = atoi(optarg);
                break:
            case 'y':
                y = atoi(optarg);
                break:
            default:
                printf("wrong argument\n");
                break;
}
```

■ Suppose the program executable was called "foo". Then we would call "./foo -x 1 -y 3" to pass the value 1 to variable x and 3 to y.

fscanf

- ■The fscanf() function is just like scanf() except it can specify a stream to read from (scanf always reads from stdin)
 - parameters:
 - file pointer,
 - format string with information on how to read file,
 - the rest are pointers to variables to storing data from file
 - Typically want to use this function in a loop until it hits the end of file
- fscanf will be useful in reading lines from the trace files.
 - L 10,1
 - M 20,1

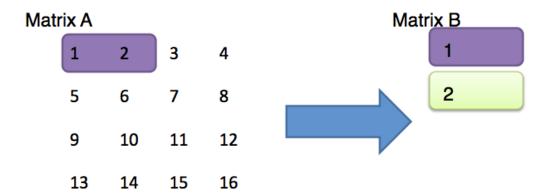
Example


```
FILE * pFile; //pointer to FILE object
pFile = fopen ("tracefile.txt","r"); //open file for reading
char identifier;
unsigned address;
int size;
// Reading lines like " M 20,1" or "L 19,3"
while(fscanf(pFile, "%c %x, %d", &identifier, &address, &size)>0)
   // Do stuff
fclose(pFile); //remember to close file when done
```

Malloc/free

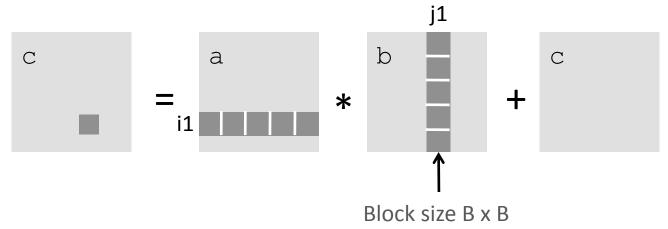
- Use malloc to allocate memory on the heap
- Always free what you malloc, otherwise may get memory leak
 - Some_pointer_you_malloced = malloc(sizeof(int));
 - Free(some_pointer_you_malloced);
- Don't free memory you didn't allocate

Part (b) Efficient Matrix Transpose


Matrix Transpose (A -> B)

How do we optimize this operation using the cache?

Part (b) Efficient Matrix Transpose


Suppose Block size is 8 bytes ?

- Access A[0][0] cache miss
- Access B[0][0] cache miss
- Access A[0][1] cache hit
- Access B[1][0] cache miss

Should we handle 3 & 4 next or 5 & 6?

Blocked Matrix Multiplication

Blocking

- Divide matrix into sub-matrices
 This is called blocking.
- Size of sub-matrix depends on cache block size, cache size, input matrix size.
- Try different sub-matrix sizes.

Part (b)

Cache:

- You get 1 kilobytes of cache
- Directly mapped (E=1)
- Block size is 32 bytes (b=5)
- There are 32 sets (s=5)

■ Test Matrices:

32 by 32, 64 by 64, 61 by 67

Part (b)

Things you'll need to know:

- Warnings are errors
- Header files
- Useful functions

Warnings are Errors

Strict compilation flags

Reasons:

- Avoid potential errors that are hard to debug
- Learn good habits from the beginning
- Add "-Werror" to your compilation flags

Missing Header Files

- Remember to include files that we will be
- using functions from
- If function declaration is missing
 - Find corresponding header files
 - Use: man <function-name>
- Live example
 - man 3 getopt

Tutorials

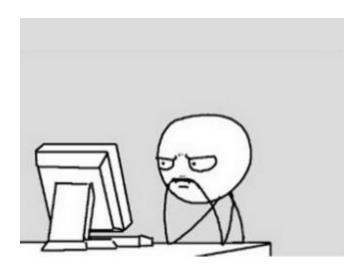
■getopt:

http://www.gnu.org/software/libc/manual/html_node/ Getopt.html

fscanf:

- http://crasseux.com/books/ctutorial/fscanf.html
- Google is your friend

Style


■Read the style guideline

- But I already read it!
- Good, read it again.

■Pay special attention to failure and error checking

- Functions don't always work
- What happens when a syscall fails??
- Start forming good habits now!

Questions?

