Carnegie Mellon

Debugging Malloc Lab

15-213: Introduction to Computer Systems
Recitation 12: Monday, Nov. 11th, 2013

Marjorie Carlson
Section A

Carnegie Mellon

News

m Shell Lab:

= Grades will be released todayish.

= |f you saw them this weekend, that was a mistake, and the grade
you saw was probably not the final grade.

" We can add, honest.

m Malloc Lab:
= Due Thursday.

m Proxy Lab:
= Goes out the same day, due Dec. 3.
= [astlab of the semester! © / ®

My Thoughts on Grading Shell Lab

m Y'all are losing a lot of points on things that are really easy to fix.
= Consistent indentation, < 80 characters per line.
" Program header comments: easiest 2 points ever?

tsh is a simplistic shell. It provides a command line and allows the user to input very
basic Unix commands, which it runs by forking & execing.
Acceptable inputs:
* basic Unix commands, including path, e.g. /bin/ls -1 or /bin/echo "Hello world".
typing % at the end of the command runs it as a background job.
supports redirection (< or >) but not pipes (|).
built-in commands:
jobs: lists all currently running or stopped processes.
fg x: moves job x to the foreground.
bg x: moves job x to the background.
quit: exits the shell.
Ctrl-C and Ctrl-Z are appropriately passed to the foreground job and its children.

= Error-checking system calls.
= e.g., what if you try to open(filename) but don’t have read
permissions on that file, or the filename is too long, or you’re out
of file descriptors, or or or...?

Carnegie Mellon

Agenda: Debugging Malloc Lab

1>~ Filipe Fortes

Debugging is like being the detective in a
crime movie where you are also the
murderer.

Errors you might get & what might cause them
Your best friend, the heap checker

Other useful tools

Beyond debugging: error prevention; version control
Optimization: good coding; gprof

A S

Carnegie Mellon

Errors

m Some errors are identified by the driver

: $./mdriver
Using default tracefiles in ./traces/
Measuring performance with a cycle counter.
Processor clock rate ~= 2261.0 MHz

ERROR [trace ./traces/alaska.rep, line 44]: block 8 has 1 garbled byte, starting at byte ©
ERROR [trace ./traces/alaska.rep, line 48]: block 38 has 1 garbled byte, starting at byte 0

ERROR [trace ./traces/alaska.rep, line 6]: Payload address (Ox80000005b) not aligned to 8 bytes

[
ERROR [trace ./traces/amptjp.rep, line 5]: Payload address (Ox800000043) not aligned to 8 bytes
[

ERROR [trace ./traces/bash.rep, line 9]: Payload address (0Ox8000000d3) not aligned to 8 bytes

ERROR [trace ./traces/alaska.rep, line 7]: Payload (0x800000718:0x800000be9) lies outside heap (0x800000000:0x800000717)
ERROR [trace ./traces/amptjp.rep, line 6]: Payload (0x800000240:0x800001237) lies outside heap (0x800000000:0x800000a3f)

ERROR: mem_sbrk failed. Ran out of memory...
ERROR [trace ./traces/needle.rep, line 95411]: mm_malloc failed.

m The error message is straightforward in most cases

= “sarbled byte” means part of the payload returned to the user has
been overwritten by your allocator. (Check your pointer arithmetic!)

= “out of memory” occurs when the memory is used very inefficiently.
(Check whether you’re losing track of blocks.)

Carnegie Mellon

Errors

m But most of the time...

$./mdriver

Using default tracefiles in ./traces/
Measuring performance with a cycle counter.
Processor clock rate ~= 2261.0 MHz

Segmentation fault

m Why did you segfault? Probably either:
" Pointer arithmetic error.

= Violating an invariant.

Fixing a Segfault

m As always, you can use printfs and gdb to find out which

line segfaulted.
= BUUUUUUT the line that segfaults is likely not where the error is.

" What you need to know is the moment the heap went wrong, not
the moment that it became obvious that the heap had gone wrong.

m You could print the whole heap before/after every function

that modifies it.

= Scroll up from the point of segfault and find the earliest operation
that makes the heap look wrong.

= This will require you to manually comb through a tremendous
amount of information.

m Easiest solution: USE YOUR HEAP CHECKER.

Agenda: Debugging Malloc Lab

Y
(@A Filipe Fortes

‘ . fortes

Debugging is like being the detective in a
crime movie where you are also the

murderer.
7:57 PM - 9 Nov 13 @ from Palo Alto, CA

Errors you might get & what might cause them
. Your best friend, the heap checker

1

2

3. Other useful tools

4. Beyond debugging: error prevention; version control
5

Optimization: good coding; gprof

Carnegie Mellon

Heap Checker

m Once you've settled on a design, write the heap checker
that checks all the invariants of the particular design.

m The checking should be detailed enough that the heap
check passes if and only if the heap is truly well-formed.

m Call the heap checker before and after the major
operations — whenever the heap should be well-formed.

m Define macros to enable/disable it conveniently.

i fdef DEBUG
#define CHECKHEAP(verbose) printf (' S); mm_checkheap(verbose) ;

Hendif

Carnegie Mellon

Invariants (Non-Exhaustive)

m Block level:
" Header and footer match.
= Payload area is aligned.

m List level:
= Next/prev pointers in consecutive free blocks are consistent.
" Free list contains no allocated blocks.
= All free blocks are in the free list.
= No contiguous free blocks in memory (unless you defer coalescing).
" There are no cycles in the list (unless you use circular lists).
® Segregated list contains only blocks that belong to the size class.

m Heap level:

" Prologue/Epilogue blocks are at the boundaries and have special size/alloc
fields.

= All blocks stay in between the heap boundaries.

m And your own invariants (e.g. address order)

10

Carnegie Mellon

Hare and Tortoise Algorithm

m Detects cycles in linked lists.

m Set two pointers, “hare” and
“tortoise,” to the beginning
of the list.

m During each iteration, move
the tortoise forward one
node, the hare two.

m If they ever point at the
same node, the list has a
cycle.

m If the tortoise reaches the
end, there are no cycles.

Pictures based on those at http://blog.kyletraff.com/infinite-loops-finding-cycles-in-a-linked-list/

Carnegie Mellon

Other Things to Watch For

m Uninitialized pointers and/or memory.

m Make sure mm_init() initializes everything.
= |tis called by the driver between every trace.

" |f something is overlooked, you might be able to pass every single
trace file, but the complete driver test will fail.

12

Agenda: Debugging Malloc Lab

Y
(\Bﬂ Filipe Fortes

‘* « fortes

Debugging is like being the detective in a
crime movie where you are also the

murderer.
7:57 PM - 9 Nov 13 @ from Palo Alto, CA

Errors you might get & what might cause them
Your best friend, the heap checker

1

2

3. Other useful tools

4. Beyond debugging: error prevention; version control
5

Optimization: good coding; gprof

13

Carnegie Mellon

Useful Tools: Valgrind and GDB

m Valgrind

"= The default check (memcheck) will let you know if there are any
illegal memory accesses or uninitialized values.

= A little less useful than in other labs, since you’re managing your own
memory.

m GDB

"= You know how to stop at a line of code using breakpoints.

® You can also stop when a particular piece of memory is accessed,
using watchpoints.

= watch expr breaks when that expression is modified.
= rwatch expr breaks when expr is read.
= awatch expr breaks when it’s read or modified.

= To break when the int at 0x12345678 is modified:
watch *((int *) 0x12345678)

14

Carnegie Mellon

Useful Tools: Your Friendly Neighborhood TA

m It can be hard for the TAs to debug your allocator, because
this is a more open-ended lab.

m Before asking for help, ask yourself some questions:
= What part of which trace file triggers the error?
= Around the point of the error, what sequence of events do you expect?
= What part of the sequence already happened?

m If you can’t answer them, gather more information.
"= How can you figure out which step(s) worked OK?
= printf, breakpoints, watchpoints...

m Bring us a detailed story, not just a “plot summary.”

= YES: “Allocations of size blah corrupt my heap after coalescing the
previous block at line number blah”

= NO: “It segfaults.”

15

Agenda: Debugging Malloc Lab

(\B-« Filipe Fortes

‘ ./ fortes

Debugging is like being the detective in a
crime movie where you are also the

murderer.
7:57 PM - 9 Nov 13 @ from Palo Alto, CA

Errors you might get & what might cause them
Your best friend, the heap checker

1

2

3. Other useful tools

4. Beyond debugging: error prevention; version control
5

Optimization: good coding; gprof

16

Carnegie Mellon

Beyond Debugging: Error Prevention

m Itis hard to write code that is completely correct the first time,
but certain practices can make your code less error-prone.

m Plan what each function does before writing your code.
" Draw pictures when a linked list is involved.

= Consider edge cases (when the block is at start/end of list; when you
only have one item in your free list; etc.).

m Write pseudocode first.
m Document your code as (or before!) you write it.

17

Carnegie Mellon

Beyond Debugging: Version Control

m “| had 60 util points just 5 minutes ago!”

m Save mm.c after each major milestone.
= Most basic: copy files around using the cp command.

= More efficient: keep different versions in separate c files, and use
In -sf mm-version-Xx.c mm.c to start using a particular
version

= Better: use git/svn/cvs... Make sure your repository is private.

18

Agenda: Debugging Malloc Lab

Y
(@A Filipe Fortes

‘ . fortes

Debugging is like being the detective in a
crime movie where you are also the

murderer.
7:57 PM - 9 Nov 13 @ from Palo Alto, CA

Errors you might get & what might cause them

Your best friend, the heap checker

Other useful tools

Beyond debugging: error prevention; version control

. Optimization: good coding; gprof

voR W e

19

Optimization: Good Coding

m To achieve better performance, sometimes you’ll want to
tweak certain parameters.
" Number of size classes

= Size parameters of size classes
= CHUNKSIZE

m It's better to write modular and encapsulated code so that
changing the parameters only requires changing a few lines
of code.

= Use macros wisely!

20

Optimization: gprof

m When you hit a bottleneck, find which part is limiting your
performance.

m A profiler is good for this kind of job.

m To use gproft:
= Change the Makefile to add -pg to the compilation flag.

= Type make to recompile the driver. (You may need to change
something in your file to force it to recompile, since it won’t detect
changes.)

= Run the driver. This will generate a file called gmon. out.
= Run gprof ./mdriver to see the result.
= Don’t forget to change the Makefile back afterwards!

21

Carnegie Mellon

Optimization: gprof flat profile

% cumulative self self total

time seconds seconds calls ns/call ns/call name

51.81 3.92 3.92 add_range
15.46 5.09 1.17 run_tests

8.99 5.77 0.68 randomize_block
7.93 6.37 0.60 check_index
7.20 6.92 0.55 get_counter
2.38 7.10 0.18 access_counter
2.38 7.28 0.18 callibrate
1.45 7.39 0.11 2370377 46.43 53.98 mm_malloc

0.79 7.45 0.06 2169016 27.68 34.09 coalesce

0.66 7.50 0.05 eval mm_speed
0.26 7.52 0.02 4261340 4.70 4.70 extract

0.20 7.53 0.02 start_counter
0.13 7.54 0.01 4320821 2.32 2.32 1insert

0.13 7.55 0.01 clear

0.13 7.56 0.01 main

0.13 7.57 0.01 set_fcyc_epsilon
0.00 7.57 0.00 2118313 0.00 0.00 mm_free

0.00 7.57 0.00 52343 0.00 0.00 extend_heap
0.00 7.57 0.00 6761 0.00 82.36 mm_realloc
0.00 7.57 0.00 185 0.00 34.09 mm_init

22

Carnegie Mellon

Optimization: gprof call graph

index % time self children called name
<spontaneous>
[1] 51.8 3.92 0.00 add_range [1]
<spontaneous>
[2] 16.5 1.17 0.08 run_tests [2]
0.04 0.01 916464/2370377 mm_malloc [9]
0.02 0.01 824212/2169016 coalesce [10]
0.00 0.00 2486/6761 mm_realloc [17]
0.00 0.00 58/185 mm_init [18]
0.00 0.00 824848/2118313 mm_free [19]
<spontaneous>
[3] 9.0 0.68 0.00 randomize_block [3]
<spontaneous>
[4] 7.9 0.60 0.00 check_index [4]
<spontaneous>
[5] 7.2 0.55 0.00 get _counter [5]
<spontaneous>
[6] 2.4 0.18 0.00 access_counter [6]
<spontaneous>
[7] 2.4 0.18 0.00 callibrate [7]
<spontaneous>
[8] 2.3 0.05 0.12 eval_mm_speed [8]
9.07 ©.01 1447593/2370377 mm_malloc [9] 23
0.04 0.01 1286132/2169016 coalesce [10]
0.00 0

.00 4275/6761 mm_realloc [17]

P e e . o .

Carnegie Mellon

Final Words

Start now (if not already)!
Come to office hours early.

|

[

m Write the heap checker well.

m Be prepared to start over several times.
|

Before handing in, check:

" Does the header comment contain a detailed description of your
approach?

" |s each function commented?

= |s the indentation correct? (Configure your text editor to use
spaces instead of tabs.)

= Are any line over 80 characters? (Go to autolab to verify these.)

24

Carnegie Mellon

Questions?

m Good luck!

25

