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News

m Shell Lab:

= Grades will be released todayish.

= |f you saw them this weekend, that was a mistake, and the grade
you saw was probably not the final grade.

" We can add, honest.

m Malloc Lab:
= Due Thursday.

m Proxy Lab:
= Goes out the same day, due Dec. 3.
= [astlab of the semester! © / ®



My Thoughts on Grading Shell Lab

m Y'all are losing a lot of points on things that are really easy to fix.
= Consistent indentation, < 80 characters per line.
" Program header comments: easiest 2 points ever?

tsh is a simplistic shell. It provides a command line and allows the user to input very
basic Unix commands, which it runs by forking & execing.
Acceptable inputs:
* basic Unix commands, including path, e.g. /bin/ls -1 or /bin/echo "Hello world".
typing % at the end of the command runs it as a background job.
supports redirection (< or >) but not pipes (|).
built-in commands:
jobs: lists all currently running or stopped processes.
fg x: moves job x to the foreground.
bg x: moves job x to the background.
quit: exits the shell.
Ctrl-C and Ctrl-Z are appropriately passed to the foreground job and its children.

= Error-checking system calls.
= e.g., what if you try to open(filename) but don’t have read
permissions on that file, or the filename is too long, or you’re out
of file descriptors, or or or...?
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Agenda: Debugging Malloc Lab
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Errors you might get & what might cause them
Your best friend, the heap checker

Other useful tools

Beyond debugging: error prevention; version control
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Errors

m Some errors are identified by the driver

: $ ./mdriver
Using default tracefiles in ./traces/
Measuring performance with a cycle counter.
Processor clock rate ~= 2261.0 MHz

ERROR [trace ./traces/alaska.rep, line 44]: block 8 has 1 garbled byte, starting at byte ©
ERROR [trace ./traces/alaska.rep, line 48]: block 38 has 1 garbled byte, starting at byte 0

ERROR [trace ./traces/alaska.rep, line 6]: Payload address (Ox80000005b) not aligned to 8 bytes

[
ERROR [trace ./traces/amptjp.rep, line 5]: Payload address (Ox800000043) not aligned to 8 bytes
[

ERROR [trace ./traces/bash.rep, line 9]: Payload address (0Ox8000000d3) not aligned to 8 bytes

ERROR [trace ./traces/alaska.rep, line 7]: Payload (0x800000718:0x800000be9) lies outside heap (0x800000000:0x800000717)
ERROR [trace ./traces/amptjp.rep, line 6]: Payload (0x800000240:0x800001237) lies outside heap (0x800000000:0x800000a3f)

ERROR: mem_sbrk failed. Ran out of memory...
ERROR [trace ./traces/needle.rep, line 95411]: mm_malloc failed.

m The error message is straightforward in most cases

= “sarbled byte” means part of the payload returned to the user has
been overwritten by your allocator. (Check your pointer arithmetic!)

= “out of memory” occurs when the memory is used very inefficiently.
(Check whether you’re losing track of blocks.)
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Errors

m But most of the time...

$ ./mdriver

Using default tracefiles in ./traces/
Measuring performance with a cycle counter.
Processor clock rate ~= 2261.0 MHz

Segmentation fault

m Why did you segfault? Probably either:
" Pointer arithmetic error.

= Violating an invariant.



Fixing a Segfault

m As always, you can use printfs and gdb to find out which

line segfaulted.
= BUUUUUUT the line that segfaults is likely not where the error is.

" What you need to know is the moment the heap went wrong, not
the moment that it became obvious that the heap had gone wrong.

m You could print the whole heap before/after every function

that modifies it.

= Scroll up from the point of segfault and find the earliest operation
that makes the heap look wrong.

= This will require you to manually comb through a tremendous
amount of information.

m Easiest solution: USE YOUR HEAP CHECKER.
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Heap Checker

m Once you've settled on a design, write the heap checker
that checks all the invariants of the particular design.

m The checking should be detailed enough that the heap
check passes if and only if the heap is truly well-formed.

m Call the heap checker before and after the major
operations — whenever the heap should be well-formed.

m Define macros to enable/disable it conveniently.

i fdef DEBUG
#define CHECKHEAP(verbose) printf (' S ); mm_checkheap(verbose) ;

Hendif
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Invariants (Non-Exhaustive)

m Block level:
" Header and footer match.
= Payload area is aligned.

m List level:
= Next/prev pointers in consecutive free blocks are consistent.
" Free list contains no allocated blocks.
= All free blocks are in the free list.
= No contiguous free blocks in memory (unless you defer coalescing).
" There are no cycles in the list (unless you use circular lists).
®  Segregated list contains only blocks that belong to the size class.

m Heap level:

" Prologue/Epilogue blocks are at the boundaries and have special size/alloc
fields.

= All blocks stay in between the heap boundaries.

m And your own invariants (e.g. address order)

10
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Hare and Tortoise Algorithm

m Detects cycles in linked lists.

m Set two pointers, “hare” and
“tortoise,” to the beginning
of the list.

m During each iteration, move
the tortoise forward one
node, the hare two.

m If they ever point at the
same node, the list has a
cycle.

m If the tortoise reaches the
end, there are no cycles.

Pictures based on those at http://blog.kyletraff.com/infinite-loops-finding-cycles-in-a-linked-list/
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Other Things to Watch For

m Uninitialized pointers and/or memory.

m Make sure mm_init() initializes everything.
= |tis called by the driver between every trace.

" |f something is overlooked, you might be able to pass every single
trace file, but the complete driver test will fail.

12
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Useful Tools: Valgrind and GDB

m Valgrind

"= The default check (memcheck) will let you know if there are any
illegal memory accesses or uninitialized values.

= A little less useful than in other labs, since you’re managing your own
memory.

m GDB

"= You know how to stop at a line of code using breakpoints.

® You can also stop when a particular piece of memory is accessed,
using watchpoints.

= watch expr breaks when that expression is modified.
= rwatch expr breaks when expr is read.
= awatch expr breaks when it’s read or modified.

= To break when the int at 0x12345678 is modified:
watch *((int *) 0x12345678)

14
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Useful Tools: Your Friendly Neighborhood TA

m It can be hard for the TAs to debug your allocator, because
this is a more open-ended lab.

m Before asking for help, ask yourself some questions:
= What part of which trace file triggers the error?
= Around the point of the error, what sequence of events do you expect?
= What part of the sequence already happened?

m If you can’t answer them, gather more information.
"= How can you figure out which step(s) worked OK?
= printf, breakpoints, watchpoints...

m Bring us a detailed story, not just a “plot summary.”

= YES: “Allocations of size blah corrupt my heap after coalescing the
previous block at line number blah”

= NO: “It segfaults.”

15
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Beyond Debugging: Error Prevention

m Itis hard to write code that is completely correct the first time,
but certain practices can make your code less error-prone.

m Plan what each function does before writing your code.
" Draw pictures when a linked list is involved.

= Consider edge cases (when the block is at start/end of list; when you
only have one item in your free list; etc.).

m Write pseudocode first.
m Document your code as (or before!) you write it.

17
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Beyond Debugging: Version Control

m “| had 60 util points just 5 minutes ago!”

m Save mm.c after each major milestone.
= Most basic: copy files around using the cp command.

= More efficient: keep different versions in separate c files, and use
In -sf mm-version-Xx.c mm.c to start using a particular
version

= Better: use git/svn/cvs... Make sure your repository is private.

18
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Optimization: Good Coding

m To achieve better performance, sometimes you’ll want to
tweak certain parameters.
" Number of size classes

= Size parameters of size classes
= CHUNKSIZE

m It's better to write modular and encapsulated code so that
changing the parameters only requires changing a few lines
of code.

= Use macros wisely!

20



Optimization: gprof

m When you hit a bottleneck, find which part is limiting your
performance.

m A profiler is good for this kind of job.

m To use gproft:
= Change the Makefile to add -pg to the compilation flag.

= Type make to recompile the driver. (You may need to change
something in your file to force it to recompile, since it won’t detect
changes.)

= Run the driver. This will generate a file called gmon. out.
= Run gprof ./mdriver to see the result.
= Don’t forget to change the Makefile back afterwards!

21
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Optimization: gprof flat profile

%  cumulative self self total

time  seconds seconds calls ns/call ns/call name

51.81 3.92 3.92 add_range
15.46 5.09 1.17 run_tests

8.99 5.77 0.68 randomize_block
7.93 6.37 0.60 check_index
7.20 6.92 0.55 get_counter
2.38 7.10 0.18 access_counter
2.38 7.28 0.18 callibrate
1.45 7.39 0.11 2370377 46.43 53.98 mm_malloc

0.79 7.45 0.06 2169016 27.68 34.09 coalesce

0.66 7.50 0.05 eval mm_speed
0.26 7.52 0.02 4261340 4.70 4.70 extract

0.20 7.53 0.02 start_counter
0.13 7.54 0.01 4320821 2.32 2.32 1insert

0.13 7.55 0.01 clear

0.13 7.56 0.01 main

0.13 7.57 0.01 set_fcyc_epsilon
0.00 7.57 0.00 2118313 0.00 0.00 mm_free

0.00 7.57 0.00 52343 0.00 0.00 extend_heap
0.00 7.57 0.00 6761 0.00 82.36 mm_realloc
0.00 7.57 0.00 185 0.00 34.09 mm_init
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Optimization: gprof call graph

index % time self children called name
<spontaneous>
[1] 51.8 3.92 0.00 add_range [1]
<spontaneous>
[2] 16.5 1.17 0.08 run_tests [2]
0.04 0.01 916464/2370377 mm_malloc [9]
0.02 0.01 824212/2169016 coalesce [10]
0.00 0.00 2486/6761 mm_realloc [17]
0.00 0.00 58/185 mm_init [18]
0.00 0.00 824848/2118313 mm_free [19]
<spontaneous>
[3] 9.0 0.68 0.00 randomize_block [3]
<spontaneous>
[4] 7.9 0.60 0.00 check_index [4]
<spontaneous>
[5] 7.2 0.55 0.00 get _counter [5]
<spontaneous>
[6] 2.4 0.18 0.00 access_counter [6]
<spontaneous>
[7] 2.4 0.18 0.00 callibrate [7]
<spontaneous>
[8] 2.3 0.05 0.12 eval_mm_speed [8]
9.07  ©.01 1447593/2370377 mm_malloc [9] 23
0.04 0.01 1286132/2169016 coalesce [10]
0.00 0

.00 4275/6761 mm_realloc [17]
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Final Words

Start now (if not already)!
Come to office hours early.

|

[

m Write the heap checker well.

m Be prepared to start over several times.
|

Before handing in, check:

" Does the header comment contain a detailed description of your
approach?

" |s each function commented?

= |s the indentation correct? (Configure your text editor to use
spaces instead of tabs.)

= Are any line over 80 characters? (Go to autolab to verify these.)

24
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Questions?

m Good luck!
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