15-213/18-213, Fall 2014
Data Lab: Manipulating Bits
Assigned: Thu, Aug 28)ue: Thu, Sep 11, 11:59PM
Last Possible Time to Turn in: Sun, Sep 14, 11:59PM

For the fastest response, please contact the staff via thiegriast (15-213-staff@cs.cmu.edu) for
questions about the assignment.

1 Introduction
The purpose of this assignment is to become more familidr kittlevel representations of common pat-
terns, integers, and floating-point numbers. You'll do thyssolving a series of programming “puzzles.”

Many of these puzzles are quite artificial, but you'll find yseif thinking much more about bits in working
your way through them.

2 Logistics

e This is an individual project. All handins are electroniéngsthe Autolab service.

e You should do all of your work in an Andrew directory, usingheir the shark machines or a Linux
Andrew machine.

3 Logging in to Autolab

All 15-213 labs are being offered this term through a Webiserdeveloped by CMU students and faculty
calledAutolah Before you can download your lab materials, you will needgdate your Autolab account.
Point your browser at the Autolab front page

https://autolab.cs.cmu.edu

You will be asked to authenticate via Shibboleth. After yothanticate this first time, Autolab will prompt
you to update your account information witmigkname Your nickname is the external name that identifies

1

you on the public scoreboards that Autolab maintains foheasignment, so pick something interesting!
You can change your nickname as often as you like. Once yaaitgadated your account information, click
on “Save Changes” button, and then select the “Home” link'tm@ed to the main Autolab page.

If you added the class late, you might not be included in Aalitsl list of valid students. In this case, you
won't see the 15-213/18-213 course listed on your Autolabdpage. If this happens, contact the staff and
ask for an account.

4 Handout Instructions

Your lab materials are contained in a Unix tar file calledalab-handout.tar , which you can down-
load from Autolab. After logging in to Autolab at

https://autolab.cs.cmu.edu

you can retrieve thdatalab-handout.tar file by selecting “Data Lat» Download handout”. Start
by copyingdatalab-handout.tar to the Linux Andrew directory where you plan to do your work.
Then give the command

linux> tar xvf datalab-handout.tar

This will create a directory calledatalab-handout that contains a number of files. The only file you
will be modifying and handing in ibits.c

The bits.c file contains a skeleton for each of the 13 programming pgzzMour assignment is to
complete each function skeleton following a strict setadling rules You may use onlstraightline code
for the integer puzzles (i.e., no loops or conditionals) anl@nited number of C arithmetic and logical
operators. Specifically, you aomly allowed to use the following eight operators:

&A|+<<>>

A few of the functions further restrict this list. Also, yoveanot allowed to use any constants longer than 8
bits. See the commentsliits.c for detailed rules and a discussion of the coding rules foh é&anctions.

WARNING : Do not let the Windows WinZip program open up yotar file (many Web browsers are set
to do this automatically). Instead, save the file to your Al8adory and use the Linutar program to
extract the files. In general, for this class you should NEMER any platform other than Linux to modify
your files, doing so can cause loss of data (and importantvork

5 The Puzzles

This section describes the puzzles that you will be solvingjtis.c

5.1 Bit Manipulations

Table 1 describes a set of functions that manipulate andsastof bits. The “Rating” field gives the
difficulty rating (the number of points) for the puzzle, aha tMax ops” field gives the maximum number
of operators you are allowed to use to implement each fumct®ee the comments lrits.c for more
details on the desired behavior of the functions. You may iadéer to the test functions bests.c . These
are used as reference functions to express the correctibebéyour functions, although they don't satisfy
the coding rules for your functions.

Name Description Rating | Max Ops
bitOr(x,y) X | y using only& and” 1 8
getByte(x,n) Extract byte n from word x 2 6
logicalShift(x), n Shift x to right by n, using a logical shift 3 20
bang(x) Computeln without using! operator 4 12
ilog2(x) Return floor(log base 2 of), x > 0 4 90

Table 1: Bit-Level Manipulation Functions.

5.2 Two’'s Complement Arithmetic

Table 2 describes a set of functions that make use of the t@aplement representation of integers. Again,
refer to the comments ibits.c and the reference versionstests.c for more information.

Name Description Rating | Max Ops
tmin() Return smallest two’s complement integer 1 4
negate(x) -X without negation 2 5
divpwr2(x,n) Computex /2" 2 15
isPositive(x) X >07? 3 8
isLess(x,y) X <y? 3 24
isPower2(x) Is x a power of two? 4 20

Table 2: Arithmetic Functions

5.3 Floating-Point Operations

For this part of the assignment, you will implement some cammingle-precision floating-point opera-
tions. In this section, you are allowed to use standard obstructures (conditionals, loops), and you may
use bothint andunsigned data types, including arbitrary unsigned and integer @orist You may
not use any unions, structs, or arrays. Most significanthy snay not use any floating point data types,
operations, or constants. Instead, any floating-pointaomkwill be passed to the function as having type
unsigned , and any returned floating-point value will be of typesigned . Your code should perform
the bit manipulations that implement the specified floatiogppoperations.

3

Table 3 describes a set of functions that operate on the\®t-fepresentations of floating-point numbers.
Refer to the comments ioits.c and the reference versionstests.c ~ for more information.

Name Description Rating | Max Ops
float_half(uf) Compute0.5 *f 4 30
float_i2f(x) Compute(float) x 4 30

Table 3: Floating-Point Functions. Valtfieis the floating-point number having the same bit representat
as the unsigned integef .

The included progranfishow helps you understand the structure of floating point numb&oscompile
fshow , switch to the handout directory and type:

linux> make
You can usdshow to see what an arbitrary pattern represents as a floating-pomber:
linux> ./fshow 2080374784
Floating point value 2.658455992e+36
Bit Representation 0x7c000000, sign = 0, exponent = f8, frac tion = 000000
Normalized. 1.0000000000 X 27(121)
You can also givédshow hexadecimal and floating point values, and it will deciplirtbit structure.
linux> ./fshow 0x15213
Floating point value 1.212781782e-40

Bit Representation 0x00015213, sign = 0, exponent
Denormalized. +0.0103172064 X 2°(-126)

0x00, fr action = 0x015213

linux> ./fshow 15.213

Floating point value 15.2130003
Bit Representation 0x41736873, sign = 0, exponent = 0x82, fr action = 0x736873
Normalized. +1.9016250372 X 27(3)

6 Evaluation

Your score will be computed out of a maximum of 63 points basethe following distribution:

37 Correctness of code.

26 Performance of code, based on number of operators usedhrfugaation.

Correctness pointsThe 13 puzzles you must solve have been given a difficultygatetween 1 and 4,
such that their weighted sum totals to 37. We will use thediitce compiler to check that your function
follows the coding rules. We will use the BDD checker to wettiat your function is correct. You will get
full credit for a puzzle only if it follows all of the coding feis and it passes all of the tests performed by the
BDD checker, and no credit otherwise.

Performance points.Our main concern at this point in the course is that you carnttgetright answer.
However, we want to instill in you a sense of keeping thingstast and simple as you can. Furthermore,
some of the puzzles can be solved by brute force, but we wantiydoe more clever. Thus, for each
function we've established a maximum number of operataasytbu are allowed to use for each function.
This limit is very generous and is designed only to catchgigtesly inefficient solutions. We will use the
dic compiler to verify that you've satisfied the operator limiou will receive two points for each correct
function that satisfies the operator limit.

7 Autograding your work

We have included some handy autograding tools in the hardioedtory—btest , dic , BDD checker,
anddriver.pl —to help you check the correctness of your work.

e btest: This program checks the functional correctness of the fonstin bits.c by calling
them many times with many different argument values. Todbaild use it, type the following two
commands:

linux> make
linux> ./btest

Notice that you must rebuildtest each time you modify youbits.c file.

You'll find it very helpful to usebtest to work through the functions one at a time, testing each one
as you go. You can use the flag to instructbtest to test only a single function:

linux> ./btest -f bitOr

This will call thebitOr function many times with many different input values. Youn éaedbtest
specific function arguments using the option flafjs-2 , and-3 :

linux> ./btest -f bitOr -1 7 -2 Oxf

This will call bitOr exactly once, using the argumemts7 andy=15 . Use this feature if you want
to debug your solution by insertingrintf ~ statements; otherwise, you'll get too much output.

e dl c: This is a modified version of an ANSI C compiler from the MIT ®&llgroup that you can use
to check for compliance with the coding rules for each puZle typical usage is:

linux> ./dlc bits.c

The program runs silently unless it detects a problem, sgeméllegal operator, too many operators,
or non-straightline code in the integer puzzles. Runnirity thie-e switch:

linux> ./dlc -e bits.c

causeglic to print counts of the number of operators used by each famciiype./dic -help
for a list of command line options.

e BDD checker: The code inBTEST simply tests your functions for a number of different cases.
For most functions, the number of possible argument contibimafar exceeds what could be tested
exhaustively. To provide complete coverage, we have atemtermal verificationprogram, called
chit , that exhaustively tests your functions for all possiblenbiations of arguments. It does this
by using a data structure known Bmary Decision Diagram$BDDSs).

You do not invokechit directly. Instead, there is a series of Perl scripts thatigeind evaluate the
calls to it. Execute

linux> ./bddcheck/check.pl -f fun
to check functiorfun . Execute

linux> ./bddcheck/check.pl
to check all of your functions. Execute

linux> ./bddcheck/check.pl -g

the check all of your functions and get a compact tabular samrof the results.

e driver. pl: Thisis a driver program that usefc and the BDD checker to compute the correct-
ness and performance points for your solution. This is timesprogram that Autolab uses when it
autogrades your handin. Execute

linux> ./driver.pl

to check all of your functions and to display the result in enpact tabular format.

8 Handin Instructions

Unlike other courses you may have taken in the past, in thisseoyou may handin your work as often as
you like until the due date of the lab.

To receive credit, you will need to upload yduits.c file using the Autolab option “Handin your work.”
Each time you handin your code, the server will run the drip@gram on your handin file and produce a
grade report (it also posts the result on the scoreboard}.s€hver archives each of your submissions and
resulting grade reports, which you can view anytime usiregthiew handin history” option.

Handin Notes:

e At any point in time, your most recently uploaded file is yoffiatal handin. You may handin as
often as you like.

e Each time you handin, you should use the “View your handitohjsand scores” option to confirm
that your handin was properly autograded. Manually reftestpage to see the autograded result.

e YOu must remove any extraneous print statements from pissuc ~ file before handing in.

9 Advice

e Seehttp://www.cs.cmu.edu/"213/faq.html for answers to frequently-asked questions.

e You can work on this assignment using one of the class shackimes

linux> ssh -X andrewid@shark.ics.cs.cmu.edu
or one of the Andrew Linux servers

linux> ssh -X andrewid@unix.andrew.cmu.edu

e Test and debug your functions one at a time. Here is the sequwea recommend:

— Step 1. Test and debug one function at a time uskitgst . To start, use thel and-2
arguments in conjunction witti to call one function with one specific set of input argument(s

linux> ./btest -f isLess -1 23 -2 Oxabcd

Feel free to userintf statements to display the values of intermediate varialttesvever,
be careful to remove them after you have debugged the functio

— Step 2. Usebtest -f to check the correctness of your function against a largebeurof
different input values:

linux> ./btest -f isLess

If btest detects an error, it will print out the specific input arguitighthat failed. Go back to
Step 1, and debug your function using those arguments

— Step 3.Usedlc to check that you've conformed to the coding rules:
linux> ./dlc bits.c

— Step 4. After your function passes all of the testshtest , use the BDD checker to perform
the definitive correctness test:

linux> ./bddcheck/check.pl -f isLess

— Step 5. Repeat Steps 1-4 for each function. At any point in time, ya @ompute the total
number of correctness and performance points you've edyednning the driver program:

linux> ./driver.pl

e Some hints fodlc :

— Don'tinclude the<stdio.h> header file in youbits.c file, as it confusesllc and results
in some non-intuitive error messages. You will still be ableseprintf in yourbits.c file
for debugging without including thestdio.h> header, althouglgcc will print a warning
that you can ignore.

— Thedlc program enforces a stricter form of declarations than isése for C++ or Java or even
that is enforced bgcc . In particular, any declaration must appear in a block (wiatenclose
in curly braces) before any statement that is not a deateratFor example, it will complain
about the following code:

int foo(int x)

{ -
int a = x;
a *= 3; / = This statement is not a declaration x [
int b = a, / * ERROR: Declaration not allowed here * [
}

e Some hints for the BDD checker:

— The BDD checker cannot handle functions that call othertfons, includingprintf . You
should usdotest to evaluate code with debuggipgintf statements. Be sure to remove any
of these debugging statements before handing in your code.

— The BDD checker scripts are a bit picky about the formattihgaur code. They expect the
function to open with a line of the form:

int fun (...)
or
unsigned fun (...)

and to end with a single right brace in the leftmost columnatihould be the only right brace
in the leftmost column of your function.

If you have any questions about this lab, the Autolab systanthe course in general, please contact the
staff at15-213-staff@cs.cmu.edu . We respond days and evenings and are very good about getting
back to you fast. Remember: We're here to help. Good luck!

