
15-213/18-213, Fall 2014
Data Lab: Manipulating Bits

Assigned: Thu, Aug 28,Due: Thu, Sep 11, 11:59PM
Last Possible Time to Turn in: Sun, Sep 14, 11:59PM

For the fastest response, please contact the staff via the mailing list (15-213-staff@cs.cmu.edu ) for
questions about the assignment.

1 Introduction

The purpose of this assignment is to become more familiar with bit-level representations of common pat-
terns, integers, and floating-point numbers. You’ll do thisby solving a series of programming “puzzles.”
Many of these puzzles are quite artificial, but you’ll find yourself thinking much more about bits in working
your way through them.

2 Logistics

• This is an individual project. All handins are electronic using the Autolab service.

• You should do all of your work in an Andrew directory, using either the shark machines or a Linux
Andrew machine.

3 Logging in to Autolab

All 15-213 labs are being offered this term through a Web service developed by CMU students and faculty
calledAutolab. Before you can download your lab materials, you will need toupdate your Autolab account.
Point your browser at the Autolab front page

https://autolab.cs.cmu.edu

You will be asked to authenticate via Shibboleth. After you authenticate this first time, Autolab will prompt
you to update your account information with anickname. Your nickname is the external name that identifies

1



you on the public scoreboards that Autolab maintains for each assignment, so pick something interesting!
You can change your nickname as often as you like. Once you have updated your account information, click
on “Save Changes” button, and then select the “Home” link to proceed to the main Autolab page.

If you added the class late, you might not be included in Autolab’s list of valid students. In this case, you
won’t see the 15-213/18-213 course listed on your Autolab home page. If this happens, contact the staff and
ask for an account.

4 Handout Instructions

Your lab materials are contained in a Unix tar file calleddatalab-handout.tar , which you can down-
load from Autolab. After logging in to Autolab at

https://autolab.cs.cmu.edu

you can retrieve thedatalab-handout.tar file by selecting “Data Lab-> Download handout”. Start
by copyingdatalab-handout.tar to the Linux Andrew directory where you plan to do your work.
Then give the command

linux> tar xvf datalab-handout.tar

This will create a directory calleddatalab-handout that contains a number of files. The only file you
will be modifying and handing in isbits.c .

The bits.c file contains a skeleton for each of the 13 programming puzzles. Your assignment is to
complete each function skeleton following a strict set ofcoding rules: You may use onlystraightlinecode
for the integer puzzles (i.e., no loops or conditionals) anda limited number of C arithmetic and logical
operators. Specifically, you areonly allowed to use the following eight operators:

! ˜ & ˆ | + << >>

A few of the functions further restrict this list. Also, you are not allowed to use any constants longer than 8
bits. See the comments inbits.c for detailed rules and a discussion of the coding rules for each functions.

WARNING : Do not let the Windows WinZip program open up your.tar file (many Web browsers are set
to do this automatically). Instead, save the file to your AFS directory and use the Linuxtar program to
extract the files. In general, for this class you should NEVERuse any platform other than Linux to modify
your files, doing so can cause loss of data (and important work!).

5 The Puzzles

This section describes the puzzles that you will be solving in bits.c .

2



5.1 Bit Manipulations

Table 1 describes a set of functions that manipulate and testsets of bits. The “Rating” field gives the
difficulty rating (the number of points) for the puzzle, and the “Max ops” field gives the maximum number
of operators you are allowed to use to implement each function. See the comments inbits.c for more
details on the desired behavior of the functions. You may also refer to the test functions intests.c . These
are used as reference functions to express the correct behavior of your functions, although they don’t satisfy
the coding rules for your functions.

Name Description Rating Max Ops
bitOr(x,y) x | y using only& and˜ 1 8
getByte(x,n) Extract byte n from word x 2 6
logicalShift(x), n Shift x to right by n, using a logical shift 3 20
bang(x) Compute!n without using! operator 4 12
ilog2(x) Return floor(log base 2 ofx ), x > 0 4 90

Table 1: Bit-Level Manipulation Functions.

5.2 Two’s Complement Arithmetic

Table 2 describes a set of functions that make use of the two’scomplement representation of integers. Again,
refer to the comments inbits.c and the reference versions intests.c for more information.

Name Description Rating Max Ops
tmin() Return smallest two’s complement integer 1 4
negate(x) -x without negation 2 5
divpwr2(x,n) Computex/2n 2 15
isPositive(x) x > 0 ? 3 8
isLess(x,y) x < y ? 3 24
isPower2(x) Is x a power of two? 4 20

Table 2: Arithmetic Functions

5.3 Floating-Point Operations

For this part of the assignment, you will implement some common single-precision floating-point opera-
tions. In this section, you are allowed to use standard control structures (conditionals, loops), and you may
use bothint and unsigned data types, including arbitrary unsigned and integer constants. You may
not use any unions, structs, or arrays. Most significantly, you may not use any floating point data types,
operations, or constants. Instead, any floating-point operand will be passed to the function as having type
unsigned , and any returned floating-point value will be of typeunsigned . Your code should perform
the bit manipulations that implement the specified floating point operations.

3



Table 3 describes a set of functions that operate on the bit-level representations of floating-point numbers.
Refer to the comments inbits.c and the reference versions intests.c for more information.

Name Description Rating Max Ops
float_half(uf) Compute0.5 * f 4 30
float_i2f(x) Compute(float) x 4 30

Table 3: Floating-Point Functions. Valuef is the floating-point number having the same bit representation
as the unsigned integeruf .

The included programfshow helps you understand the structure of floating point numbers. To compile
fshow , switch to the handout directory and type:

linux> make

You can usefshow to see what an arbitrary pattern represents as a floating-point number:

linux> ./fshow 2080374784

Floating point value 2.658455992e+36
Bit Representation 0x7c000000, sign = 0, exponent = f8, frac tion = 000000
Normalized. 1.0000000000 X 2ˆ(121)

You can also givefshow hexadecimal and floating point values, and it will decipher their bit structure.

linux> ./fshow 0x15213

Floating point value 1.212781782e-40
Bit Representation 0x00015213, sign = 0, exponent = 0x00, fr action = 0x015213
Denormalized. +0.0103172064 X 2ˆ(-126)

linux> ./fshow 15.213

Floating point value 15.2130003
Bit Representation 0x41736873, sign = 0, exponent = 0x82, fr action = 0x736873
Normalized. +1.9016250372 X 2ˆ(3)

6 Evaluation

Your score will be computed out of a maximum of 63 points basedon the following distribution:

37 Correctness of code.

26 Performance of code, based on number of operators used in each function.

4



Correctness points.The 13 puzzles you must solve have been given a difficulty rating between 1 and 4,
such that their weighted sum totals to 37. We will use the thedlc compiler to check that your function
follows the coding rules. We will use the BDD checker to verify that your function is correct. You will get
full credit for a puzzle only if it follows all of the coding rules and it passes all of the tests performed by the
BDD checker, and no credit otherwise.

Performance points.Our main concern at this point in the course is that you can getthe right answer.
However, we want to instill in you a sense of keeping things asshort and simple as you can. Furthermore,
some of the puzzles can be solved by brute force, but we want you to be more clever. Thus, for each
function we’ve established a maximum number of operators that you are allowed to use for each function.
This limit is very generous and is designed only to catch egregiously inefficient solutions. We will use the
dlc compiler to verify that you’ve satisfied the operator limit.You will receive two points for each correct
function that satisfies the operator limit.

7 Autograding your work

We have included some handy autograding tools in the handoutdirectory—btest , dlc , BDD checker,
anddriver.pl —to help you check the correctness of your work.

• btest: This program checks the functional correctness of the functions in bits.c by calling
them many times with many different argument values. To build and use it, type the following two
commands:

linux> make
linux> ./btest

Notice that you must rebuildbtest each time you modify yourbits.c file.

You’ll find it very helpful to usebtest to work through the functions one at a time, testing each one
as you go. You can use the-f flag to instructbtest to test only a single function:

linux> ./btest -f bitOr

This will call thebitOr function many times with many different input values. You can feedbtest
specific function arguments using the option flags-1 , -2 , and-3 :

linux> ./btest -f bitOr -1 7 -2 0xf

This will call bitOr exactly once, using the argumentsx=7 andy=15 . Use this feature if you want
to debug your solution by insertingprintf statements; otherwise, you’ll get too much output.

• dlc: This is a modified version of an ANSI C compiler from the MIT CILK group that you can use
to check for compliance with the coding rules for each puzzle. The typical usage is:

linux> ./dlc bits.c

5



The program runs silently unless it detects a problem, such as an illegal operator, too many operators,
or non-straightline code in the integer puzzles. Running with the-e switch:

linux> ./dlc -e bits.c

causesdlc to print counts of the number of operators used by each function. Type./dlc -help
for a list of command line options.

• BDD checker: The code inBTEST simply tests your functions for a number of different cases.
For most functions, the number of possible argument combinations far exceeds what could be tested
exhaustively. To provide complete coverage, we have created a formal verificationprogram, called
cbit , that exhaustively tests your functions for all possible combinations of arguments. It does this
by using a data structure known asBinary Decision Diagrams(BDDs).

You do not invokecbit directly. Instead, there is a series of Perl scripts that setup and evaluate the
calls to it. Execute

linux> ./bddcheck/check.pl -f fun

to check functionfun . Execute

linux> ./bddcheck/check.pl

to check all of your functions. Execute

linux> ./bddcheck/check.pl -g

the check all of your functions and get a compact tabular summary of the results.

• driver.pl: This is a driver program that usesdlc and the BDD checker to compute the correct-
ness and performance points for your solution. This is the same program that Autolab uses when it
autogrades your handin. Execute

linux> ./driver.pl

to check all of your functions and to display the result in a compact tabular format.

8 Handin Instructions

Unlike other courses you may have taken in the past, in this course you may handin your work as often as
you like until the due date of the lab.

To receive credit, you will need to upload yourbits.c file using the Autolab option “Handin your work.”
Each time you handin your code, the server will run the driverprogram on your handin file and produce a
grade report (it also posts the result on the scoreboard). The server archives each of your submissions and
resulting grade reports, which you can view anytime using the “View handin history” option.

Handin Notes:

6



• At any point in time, your most recently uploaded file is your official handin. You may handin as
often as you like.

• Each time you handin, you should use the “View your handin history and scores” option to confirm
that your handin was properly autograded. Manually refreshthe page to see the autograded result.

• You must remove any extraneous print statements from yourbits.c file before handing in.

9 Advice

• Seehttp://www.cs.cmu.edu/˜213/faq.html for answers to frequently-asked questions.

• You can work on this assignment using one of the class shark machines

linux> ssh -X andrewid@shark.ics.cs.cmu.edu

or one of the Andrew Linux servers

linux> ssh -X andrewid@unix.andrew.cmu.edu

• Test and debug your functions one at a time. Here is the sequence we recommend:

– Step 1. Test and debug one function at a time usingbtest . To start, use the-1 and -2
arguments in conjunction with-f to call one function with one specific set of input argument(s):

linux> ./btest -f isLess -1 23 -2 0xabcd

Feel free to useprintf statements to display the values of intermediate variables. However,
be careful to remove them after you have debugged the function.

– Step 2. Usebtest -f to check the correctness of your function against a large number of
different input values:

linux> ./btest -f isLess

If btest detects an error, it will print out the specific input argument(s) that failed. Go back to
Step 1, and debug your function using those arguments

– Step 3.Usedlc to check that you’ve conformed to the coding rules:

linux> ./dlc bits.c

– Step 4.After your function passes all of the tests inbtest , use the BDD checker to perform
the definitive correctness test:

linux> ./bddcheck/check.pl -f isLess

– Step 5. Repeat Steps 1–4 for each function. At any point in time, you can compute the total
number of correctness and performance points you’ve earnedby running the driver program:

linux> ./driver.pl

• Some hints fordlc :

7



– Don’t include the<stdio.h> header file in yourbits.c file, as it confusesdlc and results
in some non-intuitive error messages. You will still be ableto useprintf in yourbits.c file
for debugging without including the<stdio.h> header, althoughgcc will print a warning
that you can ignore.

– Thedlc program enforces a stricter form of declarations than is thecase for C++ or Java or even
that is enforced bygcc . In particular, any declaration must appear in a block (whatyou enclose
in curly braces) before any statement that is not a declaration. For example, it will complain
about the following code:

int foo(int x)
{

int a = x;
a * = 3; / * This statement is not a declaration * /
int b = a; / * ERROR: Declaration not allowed here * /

}

• Some hints for the BDD checker:

– The BDD checker cannot handle functions that call other functions, includingprintf . You
should usebtest to evaluate code with debuggingprintf statements. Be sure to remove any
of these debugging statements before handing in your code.

– The BDD checker scripts are a bit picky about the formatting of your code. They expect the
function to open with a line of the form:

int fun (...)

or

unsigned fun (...)

and to end with a single right brace in the leftmost column. That should be the only right brace
in the leftmost column of your function.

If you have any questions about this lab, the Autolab system,or the course in general, please contact the
staff at15-213-staff@cs.cmu.edu . We respond days and evenings and are very good about getting
back to you fast. Remember: We’re here to help. Good luck!

8


