
ANITA’S SUPER AWESOME

RECITATION SLIDES

15/18-213: Introduction to Computer Systems

Assembly and GDB, 16 Sept 2013

Anita Zhang

MANAGEMENT AND STUFF

 Bomb Lab due Tues, 24 Sept 2013, 11:59 PM

 This is my favorite lab!

 Buf Lab out Tues, 24 Sept 2013, 11:59 PM

 One week long lab

WHAT’S ON THE MENU TODAY?

 Help (again)

 Books (again)

 Motivation

 Registers & Assembly

 Bomb Lab Overview

 GDB

 More Bomb Lab

 Must Know Unix Commands

 Walkthrough

HELPING US, HELPING YOU?

 Email us: 15-213-staff@cs.cmu.edu

 Please attach C files if you have a specific question

 TAs + Professors More coverage, fast replies

 All projects on Autolab: autolab.cs.cmu.edu

 Office Hours: Sun-Thurs, 5:30PM – 8:30 PM

 Wean 5207

 Peer Tutoring: Tues 8:30 – 11 PM

 Mudge Reading Room

mailto:15-213-staff@cs.cmu.edu
mailto:15-213-staff@cs.cmu.edu
mailto:15-213-staff@cs.cmu.edu
mailto:15-213-staff@cs.cmu.edu
mailto:15-213-staff@cs.cmu.edu
autolab.cs.cmu.edu

WHAT HAVE YOU READ?

 Randal E. Bryant and David R. O'Hallaron,
Computer Systems: A Programmer's Perspective,
Second Edition, Prentice Hall, 2011

 Brian W. Kernighan and Dennis M. Ritchie,
The C Programming Language, Second Edition,
Prentice Hall, 1988

 Koenig, Andrew. C Traps and Pitfalls. Reading, MA:
Addison-Wesley, 1988

 Kernighan, Brian W., and Rob Pike. The Practice of
Programming. Reading, MA: Addison-Wesley, 1999

WHY ARE WE DOING THIS AGAIN?

INSIGHT FOR THE INQUISITIVE

 Why are we not learning about the stack yet?

 Because x86_64

 “Technology note”

 x86(_64) only

WHAT ARE REGISTERS?

 Register

 Some place in

hardware that stores

bits

 It is NOT on the stack

or in main memory

 Important

 When moving data

between registers and

memory, only the

DATA moves, not the

register

stack

heap

data

code

registers

registers

registers

REGISTERS AND ALL THEM BITS

 Quad = 64 bits

 Doubleword = 32 bits

 Word = 16 bits

 Byte = 8 bits

These are all parts of the same register

%rax – 64 bits

%eax – 32 bits

%ax – 16 bits

%ah %al

8 bits 8 bits

WHAT WE’RE WORKING WITH

 x86_64 conventions on the next slide

 Specials

 %eip – instruction pointer

 Points to the NEXT instruction to execute

 %esp – stack pointer

 Points to top of the stack

 %eax – holds the return value

 Also general purpose

 Conditional Flags

 Sit in a special register of its own

 Don’t really need to worry about it

X86_64, LOTS OF REGISTERS!
64 bits wide 32 bits wide 16 bits wide 8 bits wide 8 bits wide Use

%rax %eax %ax %ah %al Return Value

%rbx %ebx %bx %bh %bl Callee Save

%rcx %ecx %cx %ch %cl 4th Argument

%rdx %edx %dx %dh %dl 3rd Argument

%rsi %esi %si %sil 2nd Argument

%rdi %edi %di %dil 1st Argument

%rbp %ebp %bp %bpl Callee Save

%rsp %esp %sp %spl Stack Pointer

%r8 %r8d %r8w %r8b 5th Argument

%r9 %r9d %r9w %r9b 6th Argument

%r10 %r10d %r10w %r10b Caller Save

%r11 %r11d %r11w %r11b Caller Save

%r12 %r12d %r12w %r12b Callee Save

%r13 %r13d %r13w %r12b Callee Save

%r14 %r14d %rw %14b Callee Save

%r15 %r15d %r15w %15b Callee Save

SOME MORE DEFINITIONS

 Memory Addressing

 How assemblers denote memory locations

 Direct

 Indirect

 Relative

 Absolute

 …

 Many different syntactical ways to represent the

same address

REASONS WHY INTEL IS RIDICULOUS AND AWESOME

 Operations can take several forms:

 Register-to-Register

 Register-to-Memory / Memory-to-Register

 Immediate-to-Register / Immediate-to-Memory

 One address operations (push, pop)

 Did I miss any?

 Fun fact: Why not memory to memory?

REPRESENTING ADDRESSES

 x86(_64) Common Addressing

 Offset(Base, Index, Scale)

 D(Rb, Ri, S)  Mem[Rb + Ri*S + D]

 D can be any signed integer

 Scale is 1, 2, 4, 8 (assume 1 if omitted)

 Assume 0 for base if omitted

REPRESENTING ADDRESSES

 Using parenthesis

 Most of the time parenthesis means dereference

 This is still only x86(_64)

 Examples of parenthesis usage:

 (%eax)

 Contents of memory at address stored, %eax

 (%ebx, %ecx)

 Contents of memory stored at address, %ebx + %ecx

 (%ebx, %ecx, 8)

 Contents of memory stored at address, %ebx + 8*%ecx

 4(%ebx, %ecx, 8)

 Contents of memory stored at address, %ebx + 8*%ecx + 4

REPRESENTING ADDRESSES

 Using parenthesis

 Sometimes parenthesis are used just for addressing
 This is still only x86(_64)

 Example
 leal (%ebx, %ecx, 8), destination

 Take only the values  %ebx + 8*%ecx

 Does not dereference, uses the calculated value directly

 jmpq *0x402660(,%rax,8)
 The * does the dereference

 Examples of not using parenthesis

 %eax
 Use the value in %eax!

 $0x213
 A constant value

REVIEW OF CONDITIONALS/ FLAGS

 Most operations will set conditional flags

 Bit operations

 Arithmetic

 Comparisons…

 Core idea: For conditionals, look one instruction

before it to see whether it is true or false

 Will be explained

FLAGS WE (MIGHT) CARE ABOUT

 Carry (CF)

 Arithmetic carry/ borrow

 Parity (PF)

 Odd or even number of bits set

 Zero (ZF)

 Result was zero

 Sign (SF)

 Most significant bit was set

 Overflow (OF)

 Result does not fit into the location

PREP FOR ALL THE CHEAT SHEETS

 Warning: The following slides contain lots of

assembly instructions.

 All from CS:APP (our textbook BTW)

 We’re not going over every single one…

 Use it as a reference for Bomb Lab

 Quick note on Intel vs. AT&T

 This is AT&T syntax (also, Bomb Lab syntax)

 Looks like: “src, dest”

 Intel tends to follow “dest, src”

 Check out their ISA sometime

ALL THE CHEAT SHEETS (MOVEMENT)

Instruction Effect

movb S, D Move byte

movw S, D Move word

movl S, D Move doubleword

movsbw S, D Move byte to word (sign extended)

movsbl S, D Move byte to doubleword (sign extended)

movswl S, D Move word to doubleword (sign extended)

movzbw S, D Move byte to word (zero extended)

movzbl S, D Move byte to doubleword (zero extended)

movzwl S, D Move word to doubleword (zero extended)

pushl S Push double word (Mem[%esp]  S; %esp = %esp 4)

popl D Pop double word (D Mem[%esp]; %esp = %esp + 4)

ALL THE CHEAT SHEETS (BIT OPS)

Instruction Effect

LEAL S, D D  &S (Load address of source into destination)

INC D D D + 1

DEC D D  D – 1

NEG D D  –D

NOT D D  ~D

ADD S, D D D + S

SUB S, D D D – S

IMUL S, D D D * S

XOR S, D D D ^ S

OR S, D D D | S

AND S, D D D & S

SAL k, D D D << k

SHL k, D D D << k

SAR k, D D D >> k (arithmetic shift)

SHR k, D D D >> k (logical shift)

ALL THE CHEAT SHEETS (SPECIALS)

Instruction Effect

imull S R[%edx]:R[%eax]  S * R[%eax]

Signed multiply of %eax by S

Result stored in %edx:%eax

mull S R[%edx]:R[%eax]  S * R[%eax]

Unsigned multiply of %eax by S

Result stored in %edx:%eax

cltd R[%edx]:R[%eax] SignExtend(R[%eax])

Sign extend %eax into %edx

idivl S R[%edx] R[%edx]:R[%eax] mod S;

R[%eax]  R[%edx]:R[%eax] ÷ S

Signed divide of %eax by S

Quotient stored in %eax

Remainder stored in %edx

divl S R[%edx] R[%edx]:R[%eax] mod S;

R[%eax] R[%edx]:R[%eax] ÷ S

Unsigned divide of %eax by S

Quotient stored in %eax

Remainder stored in %edx

ALL THE CHEAT SHEETS (COMPARISONS)

Instruction Effect

cmpb S2, S1 Compare byte S1 and S2,

Sets conditional flags based on S1 – S2.

cmpw S2, S1 Compare word S1 and S2,

Sets conditional flags based on S1 – S2.

cmpl S2, S1 Compare double word S1 and S2,

Sets conditional flags based on S1 – S2.

testb S2, S1 Compare byte S1 and S2,

Sets conditional flags based on S1 & S2.

testw S2, S1 Compare word S1 and S2,

Sets conditional flags based on S1 & S2.

testl S2, S1 Compare double word S1 and S2,

Sets conditional flags based on S1 & S2.

ALL THE CHEAT SHEETS (SET)

Instruction Effect

sete/ setz D D  ZF (“set if equal to 0”)

setne/ setnz D D  ~ZF (set if not equal to 0)

sets D D  SF (set if negative)

setns D D  ~SF (set if nonnegative)

setg/ setnle D D  ~(SF ^ OF) & ~ZF (set if greater (signed >))

setge/ setnl D D  ~(SF ^ OF) (set if greater or equal (signed >=))

setl/ setnge D D  SF ^ OF (set if less than (signed <))

setle/ setng D D  (SF ^ OF) | ZF (set if less than or equal (signed <=))

seta/ setnbe D D  ~CF & ~ZF (set if above (unsigned >))

setae/ setnb D D  ~CF (set if above or equal (unsigned >=))

setb/ setnae D D  CF (set if below (unsigned <))

setbe/ setna D D  CF | ZF (set if below or equal (unsigned <=))

ALL THE CHEAT SHEETS (JUMP)

Instructions Effect

jmp Label Jump to label

jmp *Operand Jump to specified locations

je/ jz Label Jump if equal/ zero (ZF)

jne/ jnz Label Jump if not equal/ nonzero (~ZF)

js Label Jump if negative (SF)

jns Label Jump if nonnegative (~SF)

jg/ jnle Label Jump if greater (signed) (~(SF ^ OF) & ~ZF)

jge/ jnl Label Jump if greater or equal (signed) (~(SF ^ OF))

jl/ jnge Label Jump if less (signed) (SF ^ OF)

jle/ jng Label Jump if less or equal (signed) ((SF ^ OF) | ZF)

ja/ jnbe Label Jump if above (unsigned) (~CF & ~ZF)

jae/ jnb Label Jump if above or equal (unsigned) (~CF)

jb/ jnae Label Jump if below (unsigned) (CF)

jbe/ jna label Jump if below or equal (unsigned) (CF | ZF)

ALL THE CHEAT SHEETS (CMOVE)

Instruction Effect

cmove/ cmovz S, R S  R if Equal/ zero (ZF)

cmovne/ cmovnz S, R S  R if Not equal/ not zero (~ZF)

cmovs S, R S  R if Negative (SF)

cmovns S, R S  R if Nonnegative (~SF)

cmovg/ cmovnle S, R S  R if Greater (signed >) (~(SF ^ OF) & ~ZF)

cmovge/ cmovnl S, R S  R if Greater or equal (signed >=) (~(SF ^ OF))

cmovl/ cmovnge S, R S  R if Less (signed <) (SF ^ OF)

cmovle/ cmovg S, R S  R if Less or equal (signed <=) ((SF ^ OF) | ZF)

cmova/ cmovnbe S, R S  R if Above (unsigned >) (~CF & ~ZF)

cmovae/ cmovnb S, R S  R if Above or equal (unsigned >=) (~CF)

cmovb/ cmovnae S, R S  R if Below (unsigned <) (CF)

cmovbe/ cmovna S, R S  R if Below or equal (unsigned <=) (CF | SF)

ALL THE CHEAT SHEETS (CALLING)

Instruction Effect

call Label Push return and jump to label

call *operand Push return and jump to specified location

leave Prepare stack for return. Set stack pointer to

%ebp and pop top stack into %ebp. In assembly:

mov %ebp, %esp

pop %ebp

ret Pop return address from stack and jump there

JUMPS, IN DEPTH

test %al,%al

jne 4011ed

if ((%al & %al) != 0)

jump to 4011ed

 The test instruction is

usually followed by jump if

equal/ not equal

cmpl $0x5,0x14(%rsp)

jg 4011d0

if (0x14(%rsp) > $0x5)

jump to 4011d0

 For conditional jumps, it is

usually the second

argument greater/less

than first argument

JE, JNE, JLE, JGE, ETC

 Jump if equal == Jump if zero

 If the previous result was 0, jump

 Jump if not equal == Jump if not zero

 If the previous result was not 0, jump

 Don’t worry about the conditional flags

 Just remember “if second argument greater/less than

first argument”

DR. EVIL AND BOMBLAB

 6 stages, each asking for input

 Wrong input  bomb explodes (lose 1/2 point)

 Score rounds up, so first explosion is free

 Each stage may have multiple answers

 You get:

 Bomb executable

 Partial source of Dr. Evil mocking you

 Speed up next phase traversal with a text file

 Place answers on each line

 Run with bomb as ./bomb <solution file>

HOW IT WORKS

 “But how do I find the solutions if I don’t have C

code to work from?”

 Read a lot of bomb disassembly

 All of the phases are just loops and patterns

 GDB

 If you’re not working on a shark machine, your

bomb won’t work.

 Will get an “illegal host” error

WORKING THROUGH THIS THING

 Read the disassembly

 phase_1, phase_2, phase_3…

 explode_bomb

 Possible to reason through solutions without using

GDB

 GNU Debugger

 Step through each instruction, examine registers..

 Set up breakpoints

 Make sure to run “kill” when you hit the

explode_bomb breakpoint

 You’re screwed once you hit here, so why not exit?

BUT I DON’T KNOW HOW TO GDB??

 Here have a cheat sheet

 http://csapp.cs.cmu.edu/public/docs/gdbnotes-x86-64.pdf

 Everything you need to use GDB to solve bomb lab

 The Internet has a great range of commands you

might find useful

http://csapp.cs.cmu.edu/public/docs/gdbnotes-x86-64.pdf
http://csapp.cs.cmu.edu/public/docs/gdbnotes-x86-64.pdf
http://csapp.cs.cmu.edu/public/docs/gdbnotes-x86-64.pdf
http://csapp.cs.cmu.edu/public/docs/gdbnotes-x86-64.pdf
http://csapp.cs.cmu.edu/public/docs/gdbnotes-x86-64.pdf

GDB’S MOST USEFUL

 run/ run <arguments>

 Runs the program up till the next breakpoint.

 disassemble/ disas

 Shows the current function with an arrow to the next

 WARNING: shortcut “disa” disables all breakpoints

 step/ stepi/ nexti

 stepi steps to the next line of Assembly.

 nexti does the same but doesn’t stop in function calls.

 stepi n or nexti n steps through n lines.

GDB’S MOST USEFUL

 break <location>

 Sets breakpoint. Location can be function name or address.

 Stop at an instruction address with break *address

 You have to reset your break points when you restart GDB!

 x <address/register>

 Dereference the address or value in the register and print

the contents to the console

 Give it a format to print out to, ie. “x/s” prints as string

 p <address/register/variable>
 Print the contents of the register, or the variable, or the address

to the console

 Give it a format to print out to, ie. “p/s” prints as string

GETTING STARTED

 Download and untar ON A SHARK MACHINE

 tar xvf labhandout.tar

 shark> objdump –d bomb > filename

 Outputs the whole bomb assembly code to a filename

 shark> objdump –t bomb > filename

 Contains locations of globals, variables, etc

 shark> strings bomb > filename

 All printable strings used in your bomb

 shark> gdb bomb

 Prepares to run the bomb in gdb

SPEED UP THE WAIT

 When you have solutions, put it into a text file

 Separate each solution with a newline

 Your bomb will auto-advance completed phases with

pre-filled solutions

 Then when you run gdb next time:

 (gdb)> run solution_file

BOMB LAB SPECIFICS

 int sscanf (const char *s, const char *format, ...);

 s

 Source string to retrieve data from

 format

 Formatting string used to get values from the source string

 …

 Depending the format string, one location (address) per

formatter used to hold values extracted from source string

SSCANF EXAMPLE

#include <stdio.h>

int main () {

char sentence[]="Rudolph is 12 years old";

char str[20];

int i;

sscanf (sentence,"%s %*s %d", str, &i);

printf ("%s -> %d\n", str, i);

return 0;

}

 Outputs: Rudolph -> 12

RELEVANCE TO BOMB LAB

 Why do we care about sscanf?

 Mainly used to read in arguments

 Keep track of which locations the read in values will

be stored

 Important for knowing where arguments will be stored

 And how they will be used

 They will usually be store in memory/ on the stack

MORE BOMB LAB SPECIFICS

 Jump tables

 In memory, you can think of it as an “array” of

locations to jump to

 Using assembly it is possible to index into the “array”

 Each entry of the array will hold addresses of

instructions

JUMP TABLES

 The tip-off is something like this:
 jmpq *0x400600(,%rax,8)

 Empty base means implied 0

 %rax is the “index”

 8 is the “scale”

 In a jump tables, 64-bit machine addresses are 8 bytes

 * indicates a dereference (as in regular C)

 Like leal: does not do a dereference even with parenthesis

 Put it all together: “Jump to the address stored in the
address 0x400600 + %rax*8”

 Using GDB (example output): x/8g 0x400600
0x400600: 0x00000000004004d1 0x00000000004004c8

0x400610: 0x00000000004004c8 0x00000000004004be

0x400620: 0x00000000004004c1 0x00000000004004d7

0x400630: 0x00000000004004c8 0x00000000004004be

TOP UNIX COMMANDS

 man to read manual pages

 cd to change directories

 ls to list contents of the current directory

 ls –l to list with more info, including permissions

 scp to send files between your computer and others

 ssh to log into time shares

 tar to tar (-cvf) and untar (-xvf) (-z for optional gzip)

 chmod (ugo)+/-(rwx) to change permission bits

 Helpful hints

 Tab auto-completes.

 An up arrow scrolls up through your last few commands.

DEMO TIME

CREDITS & QUESTIONS

 StackOverflow on Assembly Projects

 P. 274 of CS:APP – x86_64 Registers

 P. 171 - 221 of CS:APP – Assembly Instructions

 CPlusPlus Reference on sscanf

http://stackoverflow.com/questions/757398/what-are-some-ways-you-can-manage-large-scale-assembly-language-projects
http://www.cplusplus.com/reference/cstdio/sscanf/
http://www.cplusplus.com/reference/cstdio/sscanf/

