ANITA’S SUPER AWESOME

® RECITATION SLIDES

‘ 15/18-213: Introduction to Computer Systems
® Assembly and GDB, 16 Sept 2013
@® AnitaZhang

MANAGEMENT AND STUFF

Bomb Lab due Tues, 24 Sept 2013, 11:59 PM

This 1s my favorite lab!

Buf Lab out Tues, 24 Sept 2013, 11:59 PM
One week long lab

WHAT’S ON THE MENU TODAY?

Help (again)

Books (again)
Motivation

Registers & Assembly

Bomb Lab Overview

GDB
More Bomb Lab
Must Know Unix Commands

Walkthrough

HELPING Us, HELPING YOU?

Email us: 15-213-staff@cs.cmu.edu

Please attach C files if you have a specific question

TAs + Professors = More coverage, fast replies
All projects on Autolab: autolab.cs.cmu.edu

Office Hours: Sun-Thurs, 5:30PM — 8:30 PM
Wean 5207

Peer Tutoring: Tues 8:30 — 11 PM
Mudge Reading Room

mailto:15-213-staff@cs.cmu.edu
mailto:15-213-staff@cs.cmu.edu
mailto:15-213-staff@cs.cmu.edu
mailto:15-213-staff@cs.cmu.edu
mailto:15-213-staff@cs.cmu.edu
autolab.cs.cmu.edu

WHAT HAVE YOU READ?

Randal E. Bryant and David R. O'Hallaron,
Computer Systems: A Programmer's Perspective,
Second Edition, Prentice Hall, 2011

Brian W. Kernighan and Dennis M. Ritchie,
The C Programming Language, Second Edition,
Prentice Hall, 1988

Koenig, Andrew. C Traps and Pitfalls. Reading, MA:
Addison-Wesley, 1988

Kernighan, Brian W., and Rob Pike. The Practice of
Programming. Reading, MA: Addison-Wesley, 1999

WHY ARE WE DOING THIS AGAIN?

Lufy Low

B EInanng
I LS

TP Juua: e L

Ty pry Y phwe 1 LT 7015

INSIGHT FOR THE INQUISITIVE

Why are we not learning about the stack yet?
Because x86_64

“Technology note”
x86(_64) only

WHAT ARE REGISTERS?

o Register

» Some place in
hardware that stores
bits

o It 1s NOT on the stack
Or In main memory

o Important

* When moving data
between registers and
memory, only the
DATA moves, not the

register

stack

heap

data

code

registers

registers

registers

REGISTERS AND ALL THEM BITS

o Quad = 64 bits

o Doubleword = 32 bits
o Word = 16 bits

o Byte = 8 bits

These are all parts of the same register

WHAT WE'RE WORKING WITH

x86 64 conventions on the next slide

Specials
%elp — Instruction pointer
o Points to the NEXT instruction to execute

%esp — stack pointer
o Points to top of the stack

%eax — holds the return value
o Also general purpose
Conditional Flags
Sit in a special register of its own
Don’t really need to worry about it

X86_64, LOTS OF REGISTERS!

%rax %eax %ax %ah %al Return Value
%rbx %ebx %bx %bh %bl Callee Save
%rex %ecx %cx %ch %cl 4t Argument
%rdx %edx %dx %dh %dl 3" Argument
%rsi %esi %si %sil 2nd Argument
%rdi %edi %di %dil 1st Argument
%rbp %ebp %bp %bpl Callee Save
%rsp %esp %sp %spl Stack Pointer
%r8 %r8d %r8w %r8b 5th Argument
%r9 %r9d %rIw %r9b 6t Argument
%110 %r10d %r10w %r10b Caller Save
%rll %rlld %rllw %r11b Caller Save
%r12 %r12d %rl2w %r12b Callee Save
%r13 %r13d %rl13w %r12b Callee Save
%r14 %rl4d %rw %14b Callee Save

%r15 %r15d %rl5w %15b Callee Save

SOME MORE DEFINITIONS

Memory Addressing

How assemblers denote memory locations
o Direct
o Indirect
o Relative
o Absolute

O o o0

Many different syntactical ways to represent the
same address

REASONS WHY INTEL IS RIDICULOUS AND AWESOME

Operations can take several forms:
Register-to-Register
Register-to-Memory / Memory-to-Register
Immediate-to-Register / Immediate-to-Memory
One address operations (push, pop)
Did I miss any?

Fun fact: Why not memory to memory?

REPRESENTING ADDRESSES

x86(_64) Common Addressing
Offset(Base, Index, Scale)
D(RDb, R1, S) 2 Mem[Rb + R1*S + D]
o D can be any signed integer

o Scale1s 1, 2, 4, 8 (assume 1 if omitted)

o Assume O for base if omitted

REPRESENTING ADDRESSES

Using parenthesis

Most of the time parenthesis means dereference
This is still only x86(_64)

Examples of parenthesis usage:
(%eax)

Contents of memory at address stored, %eax

(%ebx, %ecx)

Contents of memory stored at address, %ebx + %ecx
(%ebx, %ecx, 8)

Contents of memory stored at address, %ebx + 8*%ecx
4 (%ebx, %ecx, 8)

Contents of memory stored at address, %ebx + 8*%ecx + 4

REPRESENTING ADDRESSES

Using parenthesis
Sometimes parenthesis are used just for addressing
o This 1s still only x86(_64)

Example

Teal (%ebx, %ecx, 8), destination
o Take only the values = %ebx + 8*%ecx
o Does not dereference, uses the calculated value directly

jmpg *0x402660(,%rax,8)
o The * does the dereference
Examples of not using parenthesis

Y%eax
o Use the value in %eax!

$0x213

o A constant value

REVIEW OF CONDITIONALS/ FLAGS

Most operations will set conditional flags

Bit operations

Arithmetic

Comparisons...
Core 1dea: For conditionals, look one instruction
before 1t to see whether 1t 1s true or false

Will be explained

FLAGS WE (MIGHT) CARE ABOUT
Carry (CF)

Arithmetic carry/ borrow

Parity (PF)

Odd or even number of bits set

Zero (ZF)
Result was zero
Sign (SF)
Most significant bit was set

Overflow (OF)

Result does not fit into the location

PREP FOR ALL THE CHEAT SHEETS

Warning: The following slides contain lots of
assembly 1instructions.

All from CS:APP (our textbook BTW)
We're not going over every single one...

Use 1t as a reference for Bomb Lab

Quick note on Intel vs. AT&T
This 1s AT&T syntax (also, Bomb Lab syntax)

Looks like: “src, dest”

Intel tends to follow “dest, src”
Check out their ISA sometime

ALL THE CHEAT SHEETS (MOVEMENT)

movb S, D Move byte

movw S,D Move word

movl S,D Move doubleword

movsbw S, D Move byte to word (sign extended)

movsbl S, D Move byte to doubleword (sign extended)

movswl S, D Move word to doubleword (sign extended)

movzbw S, D Move byte to word (zero extended)

movzbl S, D Move byte to doubleword (zero extended)

movzwl S,D Move word to doubleword (zero extended)

pushl S Push double word (Mem|[%esp] € S; %esp = %esp 4)

popl D Pop double word (D € Mem|[%esp]; %esp = %esp + 4)

ALL THE CHEAT SHEETS (BIT OPS)

LEAL S,D D ¢« &S (Load address of source into destination)
INC D D« D+1

DEC D D« D-1

NEG D D« -D

NOT D D« ~D

ADD S,D D&D+S

SUB S,D D&D-S

IMUL S,D D&€D*S

XOR S,D D&«D*S

OR S,D D&D|S

AND S,D D€D&S

SAL k,D D ¢« D<<k

SHL k,D D¢ D<<k

SAR k,D D € D >> k (arithmetic shift)

SHR k, D D € D >> k (logical shift)

ALL THE CHEAT SHEETS (SPECIALS)

imull S R[%edx]:R[%eax] € S * R[%eax]

Signed multiply of %eax by S
Result stored in %edx:%eax

mull S R[%edx]:R[%eax] € S * R[%eax]

Unsigned multiply of %eax by S
Result stored in %edx:%eax

cltd R[%edx]:R[%eax] € SignExtend(R[%eax])

Sign extend %eax into %edx

1divl S R[%edx] € R[%edx]:R[%eax] mod S;
R[%eax] € R[%edx]:R[%eax] ~ S

Signed divide of %eax by S
Quotient stored in %eax
Remainder stored in %edx

divl S R[%edx] € R[%edx]:R[%eax] mod S;
R[%eax] € R[%edx]:R[%eax] ~ S

Unsigned divide of %eax by S
Quotient stored in %eax
Remainder stored in %edx

ALL THE CHEAT SHEETS (COMPARISONS)

cmpb S2,S1 Compare byte S1 and S2,
Sets conditional flags based on S1 — S2.

cmpw S2,S1 Compare word S1 and S2,
Sets conditional flags based on S1 — S2.

cmpl S2,S1 Compare double word S1 and S2,
Sets conditional flags based on S1 — S2.

testb S2,S1 Compare byte S1 and S2,
Sets conditional flags based on S1 & S2.

testw S2,S1 Compare word S1 and S2,
Sets conditional flags based on S1 & S2.

testl S2,S1 Compare double word S1 and S2,
Sets conditional flags based on S1 & S2.

ALL THE CHEAT SHEETS (SET)

sete/ setz

setne/ setnz

sets

setns

setg/ setnle
setge/ setnl
setl/ setnge

setle/ setng

seta/ setnbe
setae/ setnb
setb/ setnae

setbe/ setna

S d

O O o o

S O O O

D & ZF (“set if equal to 07)
D & ~ZF (set if not equal to 0)

D < SF (set if negative)
D € ~SF (set if nonnegative)

D € ~(SF » OF) & ~ZF (set if greater (signed >))

D € ~(SF ~ OF) (set if greater or equal (signed >=))

D € SF » OF (set if less than (signed <))

D €« (SF ~ OF) | ZF (set if less than or equal (signed <=))

D € ~CF & ~ZF (set if above (unsigned >))

D < ~CF (set if above or equal (unsigned >=))

D < CF (set if below (unsigned <))

D €< CF | ZF (set if below or equal (unsigned <=))

ALL THE CHEAT SHEETS (JUMP)

jmp Label Jump to label

jmp *QOperand Jump to specified locations

jel jz Label Jump if equal/ zero (ZF)

jne/ jnz Label Jump if not equal/ nonzero (~ZF)

js Label Jump if negative (SF)

jns Label Jump if nonnegative (~SF)

jg/ jnle Label Jump if greater (signed) (~(SF » OF) & ~ZF)
jgel jnl Label Jump if greater or equal (signed) (~(SF * OF))
I/ jnge Label Jump if less (signed) (SF » OF)

jle/ jng Label Jump if less or equal (signed) ((SF ~ OF) | ZF)
ja/ jnbe Label Jump if above (unsigned) (~CF & ~ZF)

jael jnb Label Jump if above or equal (unsigned) (~CF)

jb/ jnae Label Jump if below (unsigned) (CF)

jbe/ jna label Jump if below or equal (unsigned) (CF | ZF)

ALL THE CHEAT SHEETS (CMOVE)

cmove/ cmovz

cmovne/ cmovnz

cCmovs

cmovns

cmovg/ cmovnle
cmovge/ cmovnl
cmovl/ cmovnge

cmovle/ cmovg

cmova/ cmovnbe
cmovae/ cmovnb
cmovb/ ecmovnae

cmovbe/ cmovna

S, R
S, R

S, R
S, R

S, R
S, R
S, R
S, R

S, R
S, R
S, R
S, R

S € R if Equal/ zero (ZF)
S € R if Not equal/ not zero (~ZF)

S € R if Negative (SF)
S € R if Nonnegative (~SF)

S € R if Greater (signed >) (~(SF * OF) & ~ZF)

S € R if Greater or equal (signed >=) (~(SF * OF))
S € R if Less (signed <) (SF ~ OF)

S € R if Less or equal (signed <=) ((SF » OF) | ZF)

S € R if Above (unsigned >) (~CF & ~ZF)

S € R if Above or equal (unsigned >=) (~CF)

S €< R if Below (unsigned <) (CF)

S € R if Below or equal (unsigned <=) (CF | SF)

ALL THE CHEAT SHEETS (CALLING)

call Label Push return and jump to label
call *operand Push return and jump to specified location
leave Prepare stack for return. Set stack pointer to

%ebp and pop top stack into %ebp. In assembly:
mov %ebp, %esp
pop %ebp

ret Pop return address from stack and jump there

JUMPS, IN DEPTH

test %al,%al cmpl $0x5,0x14(%rsp)
jne 4011ed jg 4011dO
if (kal & %al) 1= 0) if (0x14(%rsp) > $0x5)
jump to 4011led jump to 4011d0
The test instruction is For conditional jumps, it 1s
usually followed by jump if usually the second
equal/ not equal argument greater/less

than first argument

JE, JNE, JLE, JGE, ETC

Jump if equal == Jump if zero
If the previous result was 0, jump

Jump if not equal == Jump if not zero
If the previous result was not 0, jump

Don’t worry about the conditional flags

Just remember “if second argument greater/less than
first argument”

DR. EVIL AND BOMBLAB

6 stages, each asking for input
Wrong input - bomb explodes (lose 1/2 point)

o Score rounds up, so first explosion is free

Each stage may have multiple answers

You get:
Bomb executable
Partial source of Dr. Evil mocking you

Speed up next phase traversal with a text file

Place answers on each line
Run with bomb as ./bomb <solution file>

HOW IT WORKS

“But how do I find the solutions if I don’t have C
code to work from?”

Read a lot of bomb disassembly
All of the phases are just loops and patterns

GDB

If you'’re not working on a shark machine, your
bomb won’t work.

Will get an “illegal host” error

WORKING THROUGH THIS THING

Read the disassembly
phase_1, phase_2, phase_3..
explode_bomb

Possible to reason through solutions without using
GDB

GNU Debugger

Step through each instruction, examine registers..
Set up breakpoints

Make sure to run “ki11” when you hit the
exp lode_bomb breakpoint

You're screwed once you hit here, so why not exit?

But I DoN'T KNOW HOW TO GDB??

Here have a cheat sheet
http://csapp.cs.cmu.edu/public/docs/gdbnotes-x86-64.pdf

Everything you need to use GDB to solve bomb lab

The Internet has a great range of commands you
might find useful

http://csapp.cs.cmu.edu/public/docs/gdbnotes-x86-64.pdf
http://csapp.cs.cmu.edu/public/docs/gdbnotes-x86-64.pdf
http://csapp.cs.cmu.edu/public/docs/gdbnotes-x86-64.pdf
http://csapp.cs.cmu.edu/public/docs/gdbnotes-x86-64.pdf
http://csapp.cs.cmu.edu/public/docs/gdbnotes-x86-64.pdf

GDB’Ss MoST USEFUL

run/ run <arguments>

Runs the program up till the next breakpoint.
disassemble/ disas

Shows the current function with an arrow to the next

WARNING: shortcut “di1sa” disables all breakpoints
step/ stepi/ nexti

stepi steps to the next line of Assembly.

nexti does the same but doesn’t stop in function calls.

stepi n or nexti nsteps through n lines.

GDB’Ss MoST USEFUL

break <location>
Sets breakpoint. Location can be function name or address.
Stop at an instruction address with break *address
You have to reset your break points when you restart GDB!

X <address/register>

Dereference the address or value in the register and print
the contents to the console

Give it a format to print out to, ie. “x/s” prints as string
p <address/register/variable>

Print the contents of the register, or the variable, or the address
to the console

Give 1t a format to print out to, 1e. “p/s” prints as string

GETTING STARTED

Download and untar ON A SHARK MACHINE
tar xvf Jabhandout. tar

shark> objdump -d bomb > £77ename

Outputs the whole bomb assembly code to a filename
shark> objdump -t bomb > £7/ename

Contains locations of globals, variables, etc
shark> strings bomb > £77ename

All printable strings used in your bomb

shark> gdb bomb
Prepares to run the bomb in gdb

SPEED UP THE WAIT

When you have solutions, put it into a text file
Separate each solution with a newline
Your bomb will auto-advance completed phases with
pre-filled solutions

Then when you run gdb next time:
(gdb)> run solution_file

BoOMB LAB SPECIFICS

int sscanf (const char *s, const char *format, ...);
S

o Source string to retrieve data from
format

o Formatting string used to get values from the source string

o Depending the format string, one location (address) per
formatter used to hold values extracted from source string

SSCANF EXAMPLE

#include <stdio.h>

int main (O {
char sentence[]="Rudolph is 12 years old";
char str[20];
int 1;
sscanf (sentence,"%s %*s %d", str, &i);
printf ("%s -> %d\n", str, 1i);
return 0;

Outputs: Rudolph -> 12

RELEVANCE TO BOMB LAB

Why do we care about sscanf?
Mainly used to read in arguments

Keep track of which locations the read in values will
be stored

o Important for knowing where arguments will be stored
o And how they will be used
o They will usually be store in memory/ on the stack

MORE BOMB LLAB SPECIFICS

Jump tables

In memory, you can think of it as an “array” of
locations to jump to

Using assembly it is possible to index into the “array”

Each entry of the array will hold addresses of
Instructions

JUMP TABLES

The tip-off is something like this:
jmpqg *0x400600(,%rax,8)

Empty base means implied O

%raxis the “index”

8 1s the “scale”
In a jump tables, 64-bit machine addresses are 8 bytes

* indicates a dereference (as in regular C)
Like Teal: does not do a dereference even with parenthesis

Put 1t all together: “Jump to the address stored in the
address 0x400600 + %rax*8”

Using GDB (example output): x/8g 0x400600
0x400600: 0x00000000004004d1 0x00000000004004c8
0x400610: 0x00000000004004¢8 0x00000000004004be
0x400620: 0x00000000004004c1 0x00000000004004d7
0x400630: 0x00000000004004¢8 0x00000000004004be

Tor UNIX COMMANDS

man to read manual pages

cd to change directories

1s to list contents of the current directory

1s -1 to list with more info, including permissions
scp to send files between your computer and others
ssh to log into time shares

tar to tar (-cvf) and untar (-xvf) (-z for optional gzip)
chmod (ugo)+/-(rwx) to change permission bits
Helpful hints

Tab auto-completes.
An up arrow scrolls up through your last few commands.

DEMO TIME

CREDITS & QUESTIONS

o StackOverflow on Assembly Projects
o P. 274 of CS:APP — x86_64 Registers
o P. 171 - 221 of CS:APP — Assembly Instructions

o CPlusPlus Reference on sscanf

http://stackoverflow.com/questions/757398/what-are-some-ways-you-can-manage-large-scale-assembly-language-projects
http://www.cplusplus.com/reference/cstdio/sscanf/
http://www.cplusplus.com/reference/cstdio/sscanf/

