
Andrew login ID:

Full Name:

CS 15-213, Fall 2006

Final Exam
Thursday Dec 14, 2006

• Make sure that your exam is not missing any sheets, then writeyour full name and Andrew login ID
on the front.

• Write your answers in the space provided below the problem. If you make a mess, clearly indicate
your final answer.

• The exam has a maximum score of 92 points.

• This exam is OPEN BOOK. You may use any books or notes you like.You may use a calculator, but
no other electronic devices. Good luck!

01 (06):

02 (09):

03 (06):

04 (12):

05 (12):

06 (06):

07 (15):

08 (06):

09 (04):

10 (08):

11 (08):

TOTAL (92):

Page 1 of 17

Problem 1. (6 points):
Floating point encoding. Consider the following 5-bit floating point representationbased on the IEEE
floating point format. This format does not have a sign bit – itcan only represent nonnegative numbers.

• There arek = 3 exponent bits. The exponent bias is 3.

• There aren = 2 fraction bits.

Numeric values are encoded as a value of the formV = M × 2
E , whereE is exponent after biasing, and

M is the significand value. The fraction bits encode the significand valueM using either a denormalized
(exponent field 0) or a normalized representation (exponentfield nonzero). Any rounding of the significand
is based onround-to-even.

Below, you are given some decimal values, and your task it to encode them in floating point format. In
addition, you should give the rounded value of the encoded floating point number. Give these as whole
numbers (e.g.,17) or as fractions in reduced form (e.g.,3/4).

Value Floating Point Bits Rounded value

9/32 001 00 1/4

1/32

1/16

3/32

1

11

12

Page 2 of 17

Problem 2. (9 points):
Structs and arrays. The next two problems require understanding how C code accessing structures and
arrays is compiled. Assume the x86-64 conventions for data sizes and alignments.

You are given the following C code:

#include "decls.h"

typedef struct {
int x[CNT2]; /* Unknown constant */
int y;
int z[CNT3]; /* Unknown constant */

} struct_a;

typedef struct{
struct_a data[CNT1]; /* Unknown constant */
int idx;

} struct_b;

void set_y(struct_b *bp, int val)
{

int idx = bp->idx;
bp->data[idx].y = val;

}

You do not have a copy of the filedecls.h, in which constantsCNT1, CNT2, andCNT3 are defined, but
you have the following x86-64 code for the functionset_y:

set_y:
bp in %rdi, val in %esi

movslq 168(%rdi),%rax
leaq (%rax,%rax,2), %rax
movl %esi, 12(%rdi,%rax,8)
ret

Based on this code, determine the values of the three constants

A. CNT1 =

B. CNT2 =

C. CNT3 =

Page 3 of 17

Problem 3. (6 points):
Structs and arrays. As in the previous problem, assume the x86-64 conventions for data sizes and align-
ments.

You are given the following C code:

#include "decls.h"

typedef struct{
type_t x; /* Unknown type */
int y[3];

} struct_a;

typedef struct{
int low;
struct_a val[N]; /* Unknown constant */
int high;

} struct_b;

int get_high(struct_b *bp)
{

return bp->high;
}

You do not have a copy of the filedecls.h, in which constantN and data typetype_t are declared, but
you have the following x86-64 code for the functionget_high:

get_high:
bp in %rdi

movl 104(%rdi), %eax
ret

Providesome valid combination of these two parameters for which the assembly code would be generated.

A. type_t:

B. N =

Page 4 of 17

Problem 4. (12 points):
Loops. Consider the following x86-64 assembly function, calledlooped:

looped:
a in %rdi, n in %esi
movl $0, %edx
testl %esi, %esi
jle .L4
movl $0, %ecx

.L5:
movslq %ecx,%rax
movl (%rdi,%rax,4), %eax
cmpl %eax, %edx
cmovl %eax, %edx
incl %ecx
cmpl %edx, %esi
jg .L5

.L4:
movl %edx, %eax
ret

Fill in the blanks of the corresponding C code.

• You may only use the C variable namesn, a, i andx, not register names.

• Use array notation in showing accesses or updates to elements ofa.

int looped(int a[], int n)
{

int i;
int x = ______________;

for(i = ____________; ________________; i++) {

if (___________________)

x = _________________;
}
return x;

}

Page 5 of 17

Problem 5. (12 points):

Stack discipline. Below is a segment of code you will remember from your buffer lab, the section that reads
a string from standard input.

int getbuf() {
char buf[8];
Gets(buf);
return 1;

}

The functionGets is similar to the library functiongets. It reads a string from standard input (terminated
by \n or end-of-file) and stores it (along with a null terminator) at the specified destination.Gets has no
way of determining whetherbuf is large enough to store the whole input. It simply copies theentire input
string, possibly overrunning the bounds of the storage allocated at the destination.

Below is the object dump of thegetbuf function:

08048c4b <getbuf>:
8048c4b: 55 push %ebp
8048c4c: 89 e5 mov %esp,%ebp
8048c4e: 83 ec 38 sub $0x20,%esp
8048c51: 8d 45 d8 lea 0xfffffff0(%ebp),%eax
8048c54: 89 04 24 mov %eax,(%esp)
8048c57: e8 f2 00 00 00 call 8048d4e <Gets>
8048c5c: b8 01 00 00 00 mov $0x1,%eax
8048c61: c9 leave
8048c62: c3 ret

(over)

Page 6 of 17

Suppose that we set a breakpoint in functiongetbuf and then use gdb to run the program with an input file
redirected to standard input. The program stops at the breakpoint when it has completed thesub instruction
at 0x08048c4e and is poised to execute thelea instruction at0x08048c51. At this point we run the
following gdb command that lists the 12 4-byte words on the stack starting at the address in%esp:

0x08048c51 in getbuf ()
(gdb) x/12w $esp
0x55683a58: 0x003164f8 0x00000001 0x55683a98 0x0030bab6
0x55683a68: 0x003166a4 0x555832e8 0x00000001 0x00000001
0x55683a78: 0x55683ab0 0x08048bf9 0x55683ab0 0x0035b690

A. What is the address ofbuf? 0x_________________

B. When the program reaches the breakpoint, what is the valueof %ebp? 0x__________________

C. To which address willgetbuf return after executing?0x__________________

D. When the program reaches the breakpoint, what is the valueof %esp? 0x__________________

E. Instead of havinggetbuf return to its calling function, suppose we want it to return to a functionsmoke
that has the address0x8048b20.

Below is an incomplete sequence of the hex values of each bytein the file that was input to the program (we
have given you the first 8 padding values). Fill in the remaining blank hex values so that the call toGets
will return tosmoke. Note thatsmoke does not depend on the value stored in%ebp.

0x01 0x02 0x03 0x04 0x05 0x06 0x07 0x08

0x___ 0x___ 0x___ 0x___ 0x___ 0x___ 0x___ 0x___

0x___ 0x___ 0x___ 0x___ 0x___ 0x___ 0x___ 0x___

Page 7 of 17

Problem 6. (6 points):

Consider the following function for computing the dot product of two arrays ofn integers each. We have
unrolled the loop by a factor of 3.

int dotprod(int a[], int b[], int n)
{

int i, x1, y1, x2, y2, x3, y3;
int r = 0;
for (i = 0; i < n-2; i += 3) {

x1 = a[i]; x2 = a[i+1]; x3 = a[i+2];
y1 = b[i]; y2 = b[i+1]; y3 = b[i+2];

r = r + x1 * y1 + x2 * y2 + x3 * y3; // Core computation
}
for (; i < n; i++)

r += a[i] * b[i];
return r;

}

Compute the performance of this function in terms of cycles per element (CPE) for each of the following
associations for the core computation. Assume that we run this code on a machine in which multiplica-
tion requires 7 cycles, while addition requires 5. Further,assume that these latencies are the only factors
constraining the performance of the program. Don’t worry about the cost of memory references or integer
operations, resource limitations, etc.

Re-association CPE

((r + x1 * y1) + x2 * y2) + x3 * y3

(r + (x1 * y1 + x2 * y2)) + x3 * y3

r + ((x1 * y1 + x2 * y2) + x3 * y3)

r + (x1 * y1 + (x2 * y2 + x3 * y3))

(r + x1 * y1) + (x2 * y2 + x3 * y3)

Page 8 of 17

Problem 7. (15 points):
Cache memories. This problem requires you to analyze both high-level and low-level aspects of caches. You
will be required to perform part of a a cache translation, determine individual hits and misses, and analyze
overall cache performance.

For this problem, you should assume the following:

• Memory is byte addressable.

• Physical addesses are 14 bits wide.

• The cache is 2-way set associative with an 8 byte block-size and 2 sets.

• Least-Recently-Used (LRU) replacement policy is used.

• sizeof(int) = 4 bytes.

(over)

Page 9 of 17

A. The following question deals with a matrix declared asint arr[4][3]. Assume that the array
has already been initialized.

(a) (1 point) The box below shows the format of a physical address. Indicate (by labeling the
diagram) the fields that would be used to determine the following:
CO The block offset within the cache line
CI The set index
CT The cache tag

13 12 11 10 9 8 7 6 5 4 3 2 1 0

(b) (1 point) Given that the address ofarr[0][0] has value0x2CCC, perform a cache address
translation to determine the block offset and set index for the first item in the array.

CI = 0x_______
CO = 0x_______

13 12 11 10 9 8 7 6 5 4 3 2 1 0

(c) (3 points) For each element in the matrixint arr[4][3], label the diagram below with the
set index that it will map to.

arr[4][3] Col 0 Col 1 Col 2
Row 0

Row 1

Row 2

Row 3

Page 10 of 17

B. (6 points) The following questions also deals withint arr[4][3] and the cache defined at the
beginning of the problem. Assume the cache stores only the matrix elements; variablesi, j, andsum
are stored in registers.

int i, j;
int sum = 0;

for(i=0; i<4; i++){
for(j=0; j<3; j++){

sum += arr[i][j];
}

}

/* second access begins */
for(i=2; i>=0; i=i-2){
for(j=0; j<3; j++){

sum += arr[i][j];
sum += arr[i+1][j];

}
}
/* second access ends */

Assume the above piece of code is executed. Fill out the tableto indicate if the corresponding memory
access will be a hit (h) or a miss (m) when accessing the arrayarr[4][3] for the second time
(between the comments ’second access begins’ and ’second access ends’).

arr[4][3] Col 0 Col 1 Col 2
Row 0

Row 1

Row 2 h

Row 3

The following grids can be used as scrap space:

Page 11 of 17

C. The following question deals with a different matrix, declared asint arr[5][5]. Again assume
thati, j, andsum are all stored in registers.

Consider the following piece of code:

#define ITERATIONS 1
int i, j, k;
int sum = 0;

for(k=0; k<ITERATIONS; k++){
for(i=0; i<5; i++){

for(j=0; j<5; j++){
sum += arr[i][j];

}
}

}

For each of the following caches, specify the total number ofcache misses for the above code.Im-
portant: Assume that the matrix is aligned so thatarr[0][0] is the first element in a cache block.

(a) (2 points) If ITERATIONS is 1 (Total accesses: 25).

i. Direct-mapped, 16 byte block-size, 4 sets

Number of cache misses _______

ii. 2-way set associative, 8 byte block-size, 2 sets

Number of cache misses _______

(b) (2 points) If ITERATIONS is 2 (Total accesses: 50).

i. Direct-mapped, 64 byte block-size, 2 sets

Number of cache misses _______

ii. 2-way set associative, 32 byte block-size, 1 set

Number of cache misses _______

Page 12 of 17

Problem 8. (6 points):

Process control.

A. What are the possible output sequences from the followingprogram:

int main() {
if (fork() == 0) {

printf("a");
exit(0);

}
else {

printf("b");
waitpid(-1, NULL, 0);

}
printf("c");
exit(0);

}

Circle the possible output sequences: abc acb bac bca cab cba

B. What is the output of the following program?

pid_t pid;
int counter = 2;

void handler1(int sig) {
counter = counter - 1;
printf("%d", counter);
fflush(stdout);
exit(0);

}

int main() {
signal(SIGUSR1, handler1);

printf("%d", counter);
fflush(stdout);

if ((pid = fork()) == 0) {
while(1) {};

}
kill(pid, SIGUSR1);
waitpid(-1, NULL, 0);
counter = counter + 1;
printf("%d", counter);
exit(0);

}

OUTPUT:__________

Page 13 of 17

Problem 9. (4 points):
File I/O. This problem tests your understanding of how Linux represents and shares files. You are asked to
show what each of the following programs prints as output:

• Assume that fileinfile.txt contains the ASCII text characters “15213”;

• You may assume that system calls do not fail;

• When a process with no children invokeswaitpid(-1,NULL,0), this call returns immediately;

• Hint: each of the following questions has a unique answer.

A. 1 int main() {
2 int fd;
3 char c;
4

5 fd = open("infile.txt", O_RDONLY, 0);
6

7 fork();
8 waitpid(-1, NULL, 0);
9

10 read(fd, &c, sizeof(c));
11 printf("%c", c);
12

13 return 0;
14 }

OUTPUT:_____________

B. 1 int main() {
2 int fd;
3 char c;
4

5 fork();
6 waitpid(-1, NULL, 0);
7

8 fd = open("infile.txt", O_RDONLY, 0);
9

10 read(fd, &c, sizeof(c));
11 printf("%c", c);
12

13 return 0;
14 }

OUTPUT:_____________

Page 14 of 17

Problem 10. (8 points):

Concurrency and sharing. Consider a concurrent C program with two threads and a sharedglobal variable
cnt. The threads execute the following lines of code:

Thread 1

/* Increment cnt */
cnt++;

Thread 2

/* Decrement cnt */
cnt--;

Suppose that these lines of C code compile to the following assembly language instructions:

Thread 1

movl cnt,%eax # L1: Load cnt
inc %eax # U1: Update cnt
movl %eax,cnt # S1: Store cnt

Thread 2

movl cnt,%eax # L2: Load cnt
dec %eax # U2: Update cnt
movl %eax,cnt # S2: Store cnt

At runtime, the operating system kernel will choose some ordering of these instructions. Since we are not
explicitly synchonizing the threads, some of these orderings will produce the correct value forcnt and
others will not.

Each of the sequences shown below gives a possible ordering of the instructions when the two threads
execute. Assuming thatcnt is initially zero, what is the value ofcnt in memory after each of the sequences
completes?

A. cnt=0; L1, U1, S1, L2, U2, S2 cnt == ________

B. cnt=0; L1, U1, L2, S1, U2, S2 cnt == _________

C. cnt=0; L2, U2, S2, L1, U1, S1 cnt == _________

D. cnt=0; L1, L2, U2, S2, U1, S1 cnt == _________

Page 15 of 17

Problem 11. (8 points):
Synchronization. This question will test your understanding of synchronizations, deadlocks and use of
semaphores. For these questions, assume each function is executed by a unique thread on a uniprocessor
system.

A. Consider the following C code:

/* Initialize semaphores */
mutex1 = 1;
mutex2 = 1;
mutex3 = 1;
mutex4 = 1;

void thread1() {

P(mutex4); _____
P(mutex2); _____
P(mutex3); _____

/* Access Data */

V(mutex4); _____
V(mutex2); _____
V(mutex3); _____

}

void thread2() {

P(mutex1); _____
P(mutex2); _____
P(mutex4); _____

/* Access Data */

V(mutex1); _____
V(mutex2); _____
V(mutex4); _____

}

A. Can this code deadlock? Yes No

B. If yes, then indicate a feasible sequence of calls to the P or V operations that will result in a
deadlock. Place an ascending sequence number (1, 2, 3, and soon) next to each operation in the order
that it iscalled, even if it never returns. For example, if a P operation is called but blocks and never
returns, you should assign it a sequence number.

Note that there are several correct solutions to this problem.

Page 16 of 17

B. Consider the following three threads and three semaphores:

/* Initialize semaphores */
s1 = 1;
s2 = 0;
s3 = 0;

/* Initialize x */
x = 0;

void thread1()
{

x = x + 1;

}

void thread2()
{

x = x + 2;

}

void thread3()
{

x = x * 2;

}

Add P(), V() semaphore operations (using semaphores s1, s2,s3) in the code for thread 1, 2 and 3
such that the concurrent execution of the three threads can only result in the value of x = 6.

Page 17 of 17

