
15-213 Introduction to Computer Systems

Exam 2
April 5, 2005

Name: Model Solution

Andrew User ID: fp

Recitation Section:

• This is an open-book exam.

• Notes and calculators are permitted, but not computers.

• Write your answer legibly in the space provided.

• You have 80 minutes for this exam.

Problem Max Score

1 14

2 18

3 12

4 8

5 12

6 11

Total 75

1

1. Symbols and Linking (14 points)
Consider the following two files, fib1.c and fib2.c :

/* fib1.c */
#define MAXFIB 1024

int table[MAXFIB];
int fib(int n);

int main(int argc, char **argv) {
int n;
table[0] = 0;
table[1] = 1;
argc--; argv++; /* skip command name */
while (argc > 0) {

if (sscanf(*argv, "%d", &n) != 1 || n < 0 || n >= MAXFIB) {
printf ("Error: %s not an int or out of range\n", *argv);
exit (0);

}
printf("fib(%d) = %d\n", n, fib(n));
argc--; argv++;

}
}

/* fib2.c */
int* table;

int fib(int n) {
static int num = 2;
if (n >= num) {

int i = num;
while (i <= n) {

table[i] = table[i-1] + table[i-2];
i++;

}
num = i;

}
return table[n];

}

2

1. (8 points) Fill in the following tables by stating for each name whether it is local
or global, whether it is strong or weak, and the section it occupies in that module
(.text , .data , or.bss). Cross out any box in the table that does not apply. For
example, cross out the first box in a line of the symbol is not in the symbol table, or
cross out the second box in a line if the symbol is not global (and therefore neither
weak nor strong).

fib1.c

Local or Global? Strong or Weak? Which segment?

table

fib

num

fib2.c

Local or Global? Strong or Weak? Which segment?

table

fib

num

2. (3 points) When the two files are linked together, symbols will be resolved. For each
symbol below, show which module it will be defined in (write fib1 or fib2 or
not determined).

Defined in module?

table

fib

num

3

3. (3 points) The code which is generated by gcc -o fib fib1.c fib2.c may not
execute correctly. Explain succinctly why.

4

2. Virtual Address Translation (18 points)

We consider a virtual address system with the following parameters.

• The memory is byte addressable.

• Virtual addresses are 20 bits wide.

• Physical addresses are 16 bits wide.

• The page size is 4096 bytes.

• The TLB is 4-way set associative with 16 total entries.

In the following tables, all numbers are given in hexadecimal. The contents of the TLB
and the page table for the first 16 virtual pages are as follows. If a VPN is not listed in the
page table, assume it generates a page fault.

TLB
Index Tag PPN Valid

0 03 B 1
07 6 0
28 3 1
01 F 0

1 31 0 1
12 3 0
07 E 1
0B 1 1

2 2A A 0
11 1 0
1F 8 1
07 5 1

3 07 3 1
3F F 0
10 D 0
32 0 0

Page Table
VPN PPN Valid

00 7 1
01 8 1
02 9 1
03 A 1
04 6 0
05 3 0
06 1 0
07 8 0
08 2 0
09 3 0
0A 1 1
0B 6 1
0C C 1
0D D 0
0E E 0
0F D 1

5

1. (4 points) In the four rows below, mark the bits that constitute the indicated part of
the virtual address with an X. Leave the remaining bits of each row blank.

Virtual Page Number

19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

VPN

Virtual Page Offset

19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

VPO

TLB Tag

19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

TLBT

TLB Index

19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

TLBI

6

2. (7 points) For the virtual address 0x7E37C , indicate the physical address and var-
ious results of the translation. If there is a page fault, enter “—” for the PPN and
Physical Address. All answers should be given in hexadecimal.

Virtual Address (one bit per box)

19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Parameter Value

VPN

TLB Tag

TLB Index

TLB Hit? (Y/N)

Page Fault? (Y/N)

PPN

Physical Address

3. (7 points) For the virtual address 0x16A48 , indicate the physical address and var-
ious results of the translation. If there is a page fault, enter “—” for the PPN and
Physical Address. All answers should be given in hexadecimal.

Virtual Address (one bit per box)

19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Parameter Value

VPN

TLB Tag

TLB Index

TLB Hit? (Y/N)

Page Fault? (Y/N)

PPN

Physical Address

7

3. Process Control (12 points)
Consider the following C program. For space reasons, we do not check return codes, so
assume that all functions return normally. Also assume that printf is unbuffered.
void handler(int sig) {

printf("H\n");
exit(0);

}

int main() {
pid_t pid1, pid2;

signal(SIGUSR1,handler);

pid1 = fork();
if (pid1 == 0) {

pid2 = fork();
printf("A\n");
if (pid2 == 0) {

printf("B\n");
exit(0);

}
printf("C\n");
kill(pid2,SIGUSR1);
exit(0);

}
if (waitpid(pid1, NULL, 0) > 0) {

printf("D\n");
}
exit(0);

}

Mark each column that represents a valid possible output of this program with ‘Yes’
and each column which is impossible with ‘No’.

A A A A A A

A C B A A A

B D H B C C

C H C C B H

D D H D D

D

8

4. Exceptional Control Flow (8 points)

The following C program computes an array v by a call to an external function init_vector ,
sums up the elements of v , and prints the result.

#include <setjmp.h>
#define VSIZE 1024
double v[VSIZE];

jmp_buf k;

double sum(int n, double *v) {
int i;
double x = 0.0;
for (i = 0; i < n; i++) {

/* place additional code here */

x += v[i];
}
return x;

}

int main () {
init_vector(VSIZE, v);
printf("%f\n", sum(VSIZE,v));
exit(0);

}
/* put new version of main below */

We want to change the sum function to indicate an error if any of the elements of the input
vector is negative by using a long jump to k .

Add a line of code to sum in the indicated place and write a new version of main that
prints the same output if there is no error condition and prints Illegal vector if any
of the vector elements is negative. Your main function must still call sum.

9

5. Garbage Collection (12 points)

In this problem we consider a tiny list processing machine in which each memory word
consists of two bytes: the first byte is a pointer to the tail of the list and the second byte is
a data element. The end of a list is marked by a pointer of 0x00 . We assume that the data
element is never a pointer.

1. (6 points) In the first question we consider a copying collector.

We start with the memory state on the left, where the range 0x10 –0x1F is the from-
space and the range 0x20 –0x2F is the to-space. All addresses and values in the
diagram are in hexadecimal.

Write in the state of memory after a copying collector is called with root pointers
0x12 and 0x14 . You may leave cells that remain unchanged blank.

Before GC

Addr Ptr Data

10 00 00

12 1C 3F

14 1E 0E

16 04 44

18 1C 01

1A 14 20

1C 18 02

1E 00 00

After GC

Addr Ptr Data Addr Ptr Data

10 20

12 22

14 24

16 26

18 28

1A 2A

1C 2C

1E 2E

10

2. (6 points) In the second question we consider a mark and sweep collector.

We use the lowest bit of the pointer as the mark bit, because it is normally always
zero since pointers must be word-aligned.

Assume the garbage collector is once again called with root pointers 0x12 and
0x14 . Write in the state of memory after the mark phase, and then again after
the sweep phase. You may leave cells that remain unchanged blank. Assume that
the free list starts at the lowest unoccupied address and is terminated by a NULL
(0x00) pointer.

Before GC

Addr Ptr Data

10 00 00

12 1C 3F

14 1E 0E

16 04 44

18 1C 01

1A 14 20

1C 18 02

1E 00 00

After Marking Phase

Addr Ptr Data

10

12

14

16

18

1A

1C

1E

After Sweep Phase

Addr Ptr Data

10

12

14

16

18

1A

1C

1E

11

6. Cyclone (11 points)

Consider the following C program which initializes a linked list p0 with a call to init_list ,
then counts the number of positive members in p0 and prints the result.

typedef struct LIST {
struct LIST *next;
int data;

} List;

void count_pos(List* p, int* k) {
int i = 0;
while (p) {

if (p->data > 0)
i++;

p = p->next;
}
*k = i;

}

int main () {
int k = 0;
int *w = &k;
List* p0 = init_list();
count_pos(p0, w);
printf ("%d\n", k);
return 0;

}

1. (6 points) When this program is ported to Cyclone, each pointer variable must be
considered to see which attributes it should be assigned. Indicate which attributes
apply by writing “yes” or “no” in the appropriate box.

You may assume that init_list(); returns a pointer to a (possibly empty) linked
list, allocated on the heap. Recall that a thin pointer is simply a bounded pointer
with bound 1, written as @numelts(1) .

@numelts(1) @notnull

w

p0

p

12

2. (5 points) Now consider the function upto (n, p) which allocates a linked list
0, . . . , n − 1 followed by the tail p and returns a pointer to it. Therefore, if we call it
with upto (n, NULL) it will return a pointer to the list 0, . . . , n− 1.

List* upto (int n, List* p) {
List* q;
if (n > 0) {

q = (List *) malloc(sizeof(List));
q->data = n-1;
q->next = p;
return upto(n-1, q);

} else {
return p;

}
}

List* init_list() {
List* q0 = upto (10, NULL);
return q0;

}

int main () {
int k = 0;
int *w = &k;
List* p0 = init_list();
count_pos(p0, w);
printf ("%d\n", k);
return 0;

}

For each pointer variable, indicate which region it points to. Recall that ‘H is the
notation for the global heap region, and that ‘f is the notation for the stack region
of function f .

Variable Region

p

q

q0

w

p0

13

