
Andrew login ID:

Full Name:

CS 15-213, Fall 2005

Exam 2
Tuesday Nov 22, 2005

Instructions:

• Make sure that your exam is not missing any sheets, then writeyour full name and Andrew login ID
on the front.

• Write your answers in the space provided below the problem. If you make a mess, clearly indicate
your final answer.

• The exam has a maximum score of 51 points.

• The problems are of varying difficulty. The point value of each problem is indicated. Pile up the easy
points quickly and then come back to the harder problems.

• This exam is OPEN BOOK. You may use any books or notes you like.No electronic devices are
allowed. Good luck!

1 (04):

2 (09):

3 (10):

4 (10):

5 (10):

6 (08):

TOTAL (51):

Page 1 of 14

Problem 1. (4 points):
This problem tests your understanding of how Linux represents and shares files. You are asked to show
what each of the following programs prints as output:

• Assume that fileinfile.txt contains the ASCII text characters ”123456”.

• The system functionint dup(int oldfd) is a variant ofdup2 that copies descriptoroldfd
to the lowest-numbered unused descriptor, and then returnsthe index of the new descriptor. For
example, suppose that the lowest-numbered unused descriptor is5. Thennewfd = dup(3) copies
descriptor3 to descriptor5, returns the integer value5, and assigns it to variablenewfd.

A. 1 int main() {
2 int fd1, fd2;
3 char c;
4

5 fd1 = open("infile.txt", O_RDONLY, 0);
6 fd2 = open("infile.txt", O_RDONLY, 0);
7

8 read(fd1, &c, 1);
9 read(fd2, &c, 1);

10

11 printf("c = %c\n", c);
12 exit(0);
13 }

c = _____________

B. 1 int main() {
2 int fd1, fd2;
3 char c;
4

5 fd1 = open("infile.txt", O_RDONLY, 0);
6 fd2 = dup(fd1);
7

8 read(fd1, &c, 1);
9 read(fd2, &c, 1);

10

11 printf("c = %c\n", c);
12 exit(0);
13 }

c = _____________

Page 2 of 14

Problem 2. (9 points):
This problem will test your knowledge of process control andsignals. Each program below produces a
single output line each time it runs. However, because of non-determinism in the scheduling of processes
and signals, each run may produce different output lines. You are asked to list all possible output lines.

A. (3 pts) Assume thatmain() calls the following functiontest() exactly once.

void test(void)
{
if (fork() == 0)
{

printf(‘‘0’’);
exit(0);

}
printf(‘‘1’’);

}

List all possible output lines:

B. (3 pts) Assume thatmain() calls the following functiontest() exactly once.

void test(void)
{
int status;
int counter = 0;

if (fork() == 0)
{
counter++;
printf(‘‘%d’’, counter);
exit(0);

}
wait(&status);

if (fork() == 0)
{
counter++;
printf(‘‘%d’’, counter);
exit(0);

}
wait(&status);

}

List all possible output lines:

Page 3 of 14

C. (3 pts) Assume thatmain() calls the following functiontest() exactly once. Assume that
sigusr1_handler() is installed as the signal handler for SIGUSR1 and thatblock_all_signals()
usessigprocmask() to block all signals.

void sigusr1_handler(int n)
{
printf(‘‘1’’);
exit(0);

}

void test(void)
{
int i, status;

for (i = 0; i < 3; i++)
{
pid_t pid = fork();
if (pid == 0)
{

block_all_signals();
printf(‘‘0’’);
exit(0);

}
kill(pid, SIGUSR1);
wait(&status);

}
}

List all possible output lines:

Page 4 of 14

Problem 3. (10 points):
The following problem concerns basic cache lookups.

• The memory is byte addressable.

• Memory accesses are to1-byte words

• Physical addresses are 13 bits wide.

• The cache is 4-way set associative, with a 4-byte block size and 8 sets.

In the following tables,all numbers are given in hexadecimal. The Indexcolumn contains the set index
for each set of 4 lines. TheTag columns contain the tag value for each line. TheV column contains the
valid bit for each line. TheBytes 0–3columns contain the data for each line, numbered left-to-right starting
with byte 0 on the left.

The contents of the cache are as follows:

4-way Set Associative Cache
Index Tag V Bytes 0–3 Tag V Bytes 0–3 Tag V Bytes 0–3 Tag V Bytes 0–3

0 F0 1 ED 32 0A A2 8A 1 BF 80 1D FC 14 1 EF 09 86 2A BC 0 25 44 6F 1A
1 BC 0 03 3E CD 38 A0 0 16 7B ED 5A BC 1 8E 4C DF 18 E4 1 FB B7 12 02
2 BC 1 54 9E 1E FA B6 1 DC 81 B2 14 00 0 B6 1F 7B 44 74 0 10 F5 B8 2E
3 BE 0 2F 7E 3D A8 C0 1 27 95 A4 74 C4 0 07 11 6B D8 BC 0 C7 B7 AF C2
4 7E 1 32 21 1C 2C 8A 1 22 C2 DC 34 BC 1 BA DD 37 D8 DC 0 E7 A2 39 BA
5 98 0 A9 76 2B EE 54 0 BC 91 D5 92 98 1 80 BA 9B F6 BC 1 48 16 81 0A
6 38 0 5D 4D F7 DA BC 1 69 C2 8C 74 8A 1 A8 CE 7F DA 38 1 FA 93 EB 48
7 8A 1 04 2A 32 6A 9E 0 B1 86 56 0E CC 1 96 30 47 F2 BC 1 F8 1D 42 30

Part 1

A) Warmup problem

What is the (data) size of this cache in bytes?

Answer:C = ________ bytes

B) The box below shows the format of a physical address. Indicate (by labeling the diagram) the fields that
would be used to determine the following:

CO The block offset within the cache line
CI The cache index
CT The cache tag

12 11 10 9 8 7 6 5 4 3 2 1 0

Page 5 of 14

Part 2

For the given physical address, indicate the cache entry accessed and the cache byte value returnedin hex.
Indicate whether a cache miss occurs. If there is a cache miss, enter “-” for “Cache Byte returned”.

Hint: Pay attention to those valid bits!

Physical address: 0x71A

Physical address format (one bit per box)

12 11 10 9 8 7 6 5 4 3 2 1 0

Physical memory reference

Parameter Value

Cache Offset (CO) 0x
Cache Index (CI) 0x
Cache Tag (CT) 0x
Cache Hit? (Y/N)
Cache Byte returned 0x

Physical address: 0x16E8

Physical address format (one bit per box)

12 11 10 9 8 7 6 5 4 3 2 1 0

Physical memory reference

Parameter Value

Cache Offset (CO) 0x
Cache Index (CI) 0x
Cache Tag (CT) 0x
Cache Hit? (Y/N)
Cache Byte returned 0x

Page 6 of 14

Part 3

For the given contents of the cache, list the eight hex physical memory addresses that willhit in Set 2.

To save space, you should express contiguous addresses as a range. For example, you would write the four
addresses0x1314, 0x1315, 0x1316, 0x1317 as0x1314--0x1317.

Answer:___

The following templates are provided as scratch space:

12 11 10 9 8 7 6 5 4 3 2 1 0

12 11 10 9 8 7 6 5 4 3 2 1 0

12 11 10 9 8 7 6 5 4 3 2 1 0

Page 7 of 14

Problem 4. (10 points):
This problem requires you to analyze the cache behavior of two small segments of code that access an
N × M integer matrixarr. For this problem,N = 4 andM = 3. Assume that the loop variablesi andj,
the accumulator variablesum, and the temporary variablestemp1 andtemp2 are all stored in registers.

#define N 4
#define M 3

int arr[N][M];

int arr_sum1()
{
int i, j;
int sum = 0;

for (i=0; i<N; i+=2){
for (j=0; j<M; j++){
int temp1 = arr[i][j];
int temp2 = arr[i+1][j];
sum += (temp1 * temp2);

}
}

return sum;
}

We are interested in how this function will interact with a simple cache. Assume that the cache is cold
when the function is called and that the array has been initialized elsewhere.The cache is direct-mapped
with two sets and a block size of 8 bytes. Assume thatarr is aligned so that the first two elements are
stored in the same cache block. Fill out the table below to indicate if the corresponding memory access in
arr will be a hit (H) or a miss (M).

arr Col 0 Col 1 Col 2
Row 0

Row 1

Row 2

Row 3

Page 8 of 14

Now consider a slightly different function that accesses the same integer matrixarr. Again, assumei, j,
sum, temp1, andtemp2 are all stored in registers.

#define N 4
#define M 3

int arr[N][M];

int arr_sum2()
{
int i, j;
int sum = 0;

for(i=0; i<N/2; i++){
for(j=0; j<M; j++){
int temp1 = arr[i][j];
int temp2 = arr[i+(N/2)][j];
sum += (temp1 * temp2);

}
}

return sum;
}

Once again, fill out the table below to indicate if the corresponding memory access inarr will be a hit (H) or
a miss (M). Assume the cache is cold when the function is called and thearray has already been initialized.
Like the previous problem, the cache is direct-mapped with two sets and a block size of 8 bytes.

arr Col 0 Col 1 Col 2
Row 0

Row 1

Row 2

Row 3

Page 9 of 14

Problem 5. (10 points):
The following problem concerns virtual memory and the way virtual addresses are translated into physical
addresses. Below are the specifications of the system on which the translation occurs.

• Memory is byte addressable and memory accesses are to 4-bytewords.

• The system is configured with 256MB of virtual memory.

• The system has only 64MB of physical memory.

• The page size is 4KB.

• The TLB is 2-way set associative with 8 total sets.

The contents of the TLB and the relevant sections of the page tables are shown below. In the following
tables,all numbers are given in hexadecimal.

TLB
Index Tag PPN Valid

0 0003 03EB 1
1A10 0D46 0

1 0107 0AD3 1
1D01 052F 0

2 0106 0D4E 1
1213 01D3 0

3 0301 005C 0
0A0B 0231 1

4 1211 0819 1
0108 03D8 0

5 011F 0218 1
1102 0A4A 1

6 1FE7 0263 1
103F 0FAF 0

7 0211 030D 0
10D2 0310 0

Page Table
VPN PPN Valid

0837 1457 0
0838 0D31 0
0839 0AD3 1
0840 035A 1
0841 16F3 0
0842 0D4E 1
0843 031D 1
0844 078F 1
0845 0487 1
0846 0819 0
0847 136B 1
0848 04BA 1
0849 0D33 0
0850 0061 0
0851 0328 0
0852 0F42 0

Page 10 of 14

A. Part 1 - Warmup questions

(a) How many bits are needed to represent the virtual addressspace?

(b) How many bits are needed to represent the physical address space?

(c) What is the total number of page table entries?

B. Part 2 - Virtual memory address translation

(a) Please step through the following address translation.You may indicate a page fault by entering
a ’–’ for Physical Page Number and Physical Address.

Parameter Value

Virtual Address Accessed: 0x844044

Virtual Page Number: 0x

TLB Index: 0x

TLB Tag: 0x

TLB Hit or Miss:

Physical Page Number: 0x

Physical Address: 0x

Please use the layout below as scratch space if necessary.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Page 11 of 14

(b) Please step through the following address translation.You may indicate a page fault by entering
in ’-’ for Physical Page Number and Physical Address.

Parameter Value

Virtual Address Accessed: 0x839108

Virtual Page Number: 0x

TLB Index: 0x

TLB Tag: 0x

TLB Hit or Miss:

Physical Page Number: 0x

Physical Address: 0x

Please use the layout below as scratch space as necessary.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Page 12 of 14

Performance Evaluation

The following code evaluates a polynomial of degreedegree overx for a set of coefficientscoeff.

/* Unroll 2x */
data_t peval2(data_t coeff[], data_t x, int degree)
{

data_t result = 0;
int i;

/* Unroll by 2X */
for (i = degree; i >= 1; i -= 2) {

/* Version 1 Main Loop Computation */
result = (((result * x) + coeff[i]) * x) + coeff[i-1];

}

/* Finish off remaining element(s) */
for (; i >= 0; i -= 1) {

result = result * x + coeff[i];
}
return result;

}

The code uses loop unrolling to compute two terms of the polynomial per iteration. It uses a technique
known asHorner’s Ruleto reduce the number of multiplications and additions. Datatypedata t can be
defined to different types using atypedef declaration.

Running on an Intel Pentium 4, and withdata t defined to befloat, this code achieves a CPE (Cycles
Per Element) of12.0. Considering that this machine has a latency of 7 cycles for single-precision multipli-
cation, and 5 for single-precision addition, we can see thatthe CPE is dictated by these latencies, the data
dependencies in the main loop (the line labeled “Version 1 Main Loop Computation”), and the
fact that each iteration computes two “elements”.

Page 13 of 14

Problem 6. (8 points):
Below are four alternative versions of the main loop computation. For each version, write down the CPE
that will result. The possible choices are:6.0, 8.5, 9.5, and12.0. You can determine the answer knowing
only the operation latencies and the data dependencies thateach line entails.You can ignore other factors
such as the issue time and the number of functional units.

A. Version 2

result = (((result * x) * x) + (coeff[i] * x)) + coeff[i-1];

CPE =_____________

B. Version 3

result = ((result * (x * x)) + (coeff[i] * x)) + coeff[i-1];

CPE =_____________

C. Version 4

result = ((result * x) * x) + ((coeff[i] * x) + coeff[i-1]);

CPE =_____________

D. Version 5

result = (result * (x * x)) + ((coeff[i] * x) + coeff[i-1]);

CPE =_____________

Page 14 of 14

