
Andrew login ID:

Full Name:

Recitation Section:

CS 15-213, Spring 2009
Exam 1

Tuesday, February 24, 2009

Instructions:

• Make sure that your exam is not missing any sheets, then write your full name, Andrew login ID, and
recitation section (A–J) on the front.

• Write your answers in the space provided for the problem. If you make a mess, clearly indicate your
final answer.

• The exam has a maximum score of 100 points.

• The problems are of varying difficulty. The point value of each problem is indicated. Pile up the easy
points quickly and then come back to the harder problems.

• This exam is OPEN BOOK. You may use any books or notes you like. No calculators or other
electronic devices are allowed.

• Good luck!

1 (16):

2 (22):

3 (13):

4 (13):

5 (22):

6 (14):

TOTAL (100):

Page 1 of 17

Problem 1. (16 points):
Consider a new floating point format that follows the IEEE spec you should be familiar, except with 3
exponent bits and 2 fraction bits (and 1 sign bit). Fill in all blank cells in the table below. If, in the process
of converting a decimal number to a float, you have to round, write the rounded value next to the original
decimal as well.

Description Decimal Binary Representation

Bias -----

Smallest positive number

Lowest finite

Smallest positive normalized

----- − 7
16

----- 5
4

----- 1 010 01

----- 13

Page 2 of 17

Problem 2. (22 points):
Consider the C code written below and compiled on a 32-bit Linux system using GCC.

struct s1
{
short x;
int y;

};

struct s2
{
struct s1 a;
struct s1 *b;
int x;
char c;
int y;
char e[3];
int z;

};

short fun1(struct s2 *s)
{
return s->a.x;

}

void *fun2(struct s2 *s)
{
return &s->z;

}

int fun3(struct s2 *s)
{
return s->z;

}

short fun4(struct s2 *s)
{
return s->b->x;

}

Page 3 of 17

a) What is the size of struct s2?

b) How many bytes are wasted for padding?

You may use the rest of the space on this page for scratch space to help with the rest of this problem.
Nothing written below this line will be graded.

Page 4 of 17

c) Which of the following correspond to functions fun1, fun2, fun3, and fun4?

push %ebp
mov %esp,%ebp
mov 0x8(%ebp),%eax
add $0x1c,%eax
pop %ebp
ret

ANSWER: ________

push %ebp
mov %esp,%ebp
mov 0x8(%ebp),%eax
mov 0x8(%eax),%eax
movswl (%eax),%eax
pop %ebp
ret

ANSWER: ________

push %ebp
mov %esp,%ebp
mov 0x8(%ebp),%eax
mov 0x1c(%eax),%eax
pop %ebp
ret

ANSWER: ________

push %ebp
mov %esp,%ebp
mov 0x8(%ebp),%eax
movswl (%eax),%eax
pop %ebp
ret

ANSWER: ________

Page 5 of 17

d) Assume a variable is declared as struct s2 myS2; and the storage for this variable begins at ad-
dress 0xbfb2ffc0.

(gdb) x/20w &myS2
0xbfb2ffc0: 0x0000000f 0x000000d5 0xbfb2ffe8 0x00000000
0xbfb2ffd0: 0xb7f173ff 0x0000012c 0xbf030102 0x0000000c
0xbfb2ffe0: 0xb7e2dfd5 0xb7f15ff4 0xbfb30012 0x000000f3
0xbfb2fff0: 0xb7e2e0b9 0xb7f15ff4 0xbfb30058 0xb7e1adce
0xbfb30000: 0x00000001 0xbfb30084 0xbfb3008c 0xbfb30010

Fill in all the blanks below.

HINTS: Label the fields. Not all 20 words are used. Remember endianness!

What would be returned by:

fun1(&myS2) = 0x___________

fun2(&myS2) = 0x___________

fun3(&myS2) = 0x___________

fun4(&myS2) = 0x___________

What is the value of:

myS2.b->y = 0x___________

myS2.a.y = 0x___________

myS2.z = 0x___________

myS2.e[1] = 0x___________

Page 6 of 17

Problem 3. (13 points):
Given the memory dump and disassembly from GDB on the next page, fill in the C skeleton of the function
switchfn:

int switchfn(int a, long b) {

int y = 0, x = ____________;
switch (a * b) {

case 1:
return 24;

case 6:

a = _______________;
return a;

case 0:
return a + b;

case 4:
x = a;
y *= b;
break;

case ____:
a = y == x;

case 3:

b = y ____ x;

case 5:

return a ____ b;
}

return x == y;
}

Page 7 of 17

There may be a few instructions you haven’t seen before in this assembly dump. data16 is functionally
equivalent to nop. setcc functions similarly to jcc except it will set its operand to 1 or 0 instead of
jumping or not jumping, respectively. cqto is the 64-bit equivalent of cltd.

(gdb) x/7xg 0x4005c0
0x4005c0 <_IO_stdin_used+8>: 0x00000000004004a1 0x0000000000400494
0x4005d0 <_IO_stdin_used+24>: 0x00000000004004ac 0x00000000004004b4
0x4005e0 <_IO_stdin_used+40>: 0x00000000004004a5 0x00000000004004bc
0x4005f0 <_IO_stdin_used+56>: 0x000000000040049a

0x0000000000400476 <switchfn+0>: mov $0x0,%ecx
0x000000000040047b <switchfn+5>: mov $0xdeadbeef,%edx
0x0000000000400480 <switchfn+10>: movslq %edi,%rax
0x0000000000400483 <switchfn+13>: imul %rsi,%rax
0x0000000000400487 <switchfn+17>: cmp $0x6,%rax
0x000000000040048b <switchfn+21>: ja 0x4004c5 <switchfn+79>
0x000000000040048d <switchfn+23>: jmpq *0x4005c0(,%rax,8)
0x0000000000400494 <switchfn+30>: mov $0x18,%eax
0x0000000000400499 <switchfn+35>: retq
0x000000000040049a <switchfn+36>: lea (%rdx,%rsi,4),%eax
0x000000000040049d <switchfn+39>: data16
0x000000000040049e <switchfn+40>: data16
0x000000000040049f <switchfn+41>: nop
0x00000000004004a0 <switchfn+42>: retq
0x00000000004004a1 <switchfn+43>: lea (%rdi,%rsi,1),%eax
0x00000000004004a4 <switchfn+46>: retq
0x00000000004004a5 <switchfn+47>: mov %edi,%edx
0x00000000004004a7 <switchfn+49>: imul %esi,%ecx
0x00000000004004aa <switchfn+52>: jmp 0x4004c5 <switchfn+79>
0x00000000004004ac <switchfn+54>: cmp %edx,%ecx
0x00000000004004ae <switchfn+56>: sete %al
0x00000000004004b1 <switchfn+59>: movzbl %al,%edi
0x00000000004004b4 <switchfn+62>: cmp %edx,%ecx
0x00000000004004b6 <switchfn+64>: setl %al
0x00000000004004b9 <switchfn+67>: movzbl %al,%esi
0x00000000004004bc <switchfn+70>: movslq %edi,%rax
0x00000000004004bf <switchfn+73>: cqto
0x00000000004004c1 <switchfn+75>: idiv %rsi
0x00000000004004c4 <switchfn+78>: retq
0x00000000004004c5 <switchfn+79>: cmp %ecx,%edx
0x00000000004004c7 <switchfn+81>: sete %al
0x00000000004004ca <switchfn+84>: movzbl %al,%eax
0x00000000004004cd <switchfn+87>: retq

Page 8 of 17

Problem 4. (13 points):
The function below is hand-written assembly code for a sorting algorithm. Fill in the blanks on the next
page by converting this assembly to C code.

.globl mystery_sort # exports the symbol so other .c files
can call the function

mystery_sort:
jmp loop1_check

loop1:
xor %rdx, %rdx
mov %rsi, %rcx
jmp loop2_check

loop2:
mov (%rdi, %rcx, 8), %rax
cmp %rax, (%rdi, %rdx, 8)
jg loop2_check
mov %rcx, %rdx

loop2_check:
dec %rcx
test %rcx, %rcx
jnz loop2

dec %rsi
mov (%rdi, %rsi, 8), %rax
mov (%rdi, %rdx, 8), %rcx
mov %rcx, (%rdi, %rsi, 8)
mov %rax, (%rdi, %rdx, 8)

loop1_check:
test %rsi, %rsi
jnz loop1

ret

Page 9 of 17

void mystery_sort (long* array, long len)
{
long a, b, tmp;

while (_____ > _____)
{

a = _____;

for (b = _____; b > _____; b--)
{

if (array[_____] > array{_____])
{

_____ = _____;
}

}

len--;

tmp = array[_____];

array[_____] = array[_____];

array[_____] = tmp;
}

}

Page 10 of 17

Problem 5. (22 points):
Circle the correct answer.

1. What sequence of operations does the leave instruction execute?

(a) mov %ebp,%esp
pop %ebp

(b) pop %ebp
mov %ebp,%esp

(c) pop %esp
mov %ebp,%esp

(d) push %ebp
mov %esp,%ebp

2. Who is responsible for storing the return address of a function call?

(a) the caller

(b) the callee

(c) the kernel

(d) the CPU

3. On what variable types does C perform logical right shifts?

(a) signed types

(b) unsigned types

(c) signed and unsigned types

(d) C does not perform logical right shifts

4. What is the difference between the rbx and the ebx register on an x86 64 machine?

(a) nothing, they are the same register

(b) ebx refers to only the low order 32 bits of the rbx register

(c) they are totally different registers

(d) ebx refers to only the high order 32 bits of the rbx register

5. Which of the following is the name for the optimization performed when you pull code outside of a
loop?

(a) code motion

(b) loop expansion

(c) dynamic programming

(d) loop unrolling

Page 11 of 17

6. On 32-bit x86 systems, where is the value of %ebp saved in relation to the current value of %ebp?
(Assume a pointer size of 32 bits.)

(a) there is no relation between where the current base pointer and old base pointer are saved.

(b) old ebp = (ebp - 4)

(c) old ebp = (ebp + 4)

(d) old ebp = (ebp)

7. Which of the following mov instructions is invalid?

(a) mov %esp, %ebp

(b) mov $0xdeadbeef, %eax

(c) mov (0xdeadbeef), %esp

(d) mov $0xdeadbeef, 0x08048c5f

(e) mov %ebx, 0x08048c5f

8. In C, the result of shifting a value by greater than its type’s width is:

(a) illegal

(b) undefined

(c) 0

(d) Encouraged by the C1x standard.

9. Extending the stack can by done by

(a) swapping the base pointer and the stack pointer

(b) subtracting a value from your stack pointer

(c) adding a value to your stack pointer

(d) executing the ret instruction

10. 64-bit systems can support 32-bit assembly code

(a) TRUE

(b) FALSE

11. Assuming the register %rbx contains the value 0xfaaafbbbfcccfddd, which instruction would cause
the register %rdi to contain the value 0x00000000fcccfddd?

(a) movl %ebx, %rdi

(b) movslq %ebx, %rdi

(c) movzlq %ebx, %rdi

(d) lea %ebx, %rdi

Page 12 of 17

Problem 6. (14 points):
Throughout this question, remember that it might help you to draw a picture. It helps us see what you’re
thinking when we grade you, and you’ll be more likely to get partial credit if your answers are wrong.

Consider the following C code:

void foo(int a, int b, int c, int d) {
int buf[16];
buf[0] = a;
buf[1] = b;
buf[2] = c;
buf[3] = d;
return;

}

void bar() {
foo(0x15213, 0x18243, 0xdeadbeef, 0xcafebabe)

}

Page 13 of 17

When compiled with default options (32-bit), it gives the following assembly:

00000000 <foo>:
0: 55 push %ebp
1: 89 e5 mov %esp,%ebp
3: 83 ec 40 sub $0x40,%esp

6: 8b 45 08 mov _____(%ebp),%eax //temp = a;
9: 89 45 c0 mov %eax,-0x40(%ebp) //buf[0] = temp;

c: 8b 45 0c mov _____(%ebp),%eax //temp = b;
f: 89 45 c4 mov %eax,-0x3c(%ebp) //buf[1] = temp;

12: 8b 45 10 mov _____(%ebp),%eax //temp = c;
15: 89 45 c8 mov %eax,-0x38(%ebp) //buf[2] = temp;

18: 8b 45 14 mov _____(%ebp),%eax //temp = d;
1b: 89 45 cc mov %eax,-0x34(%ebp) //buf[3] = temp;
1e: c9 leave
1f: c3 ret

00000020 <bar>:
20: 55 push %ebp
21: 89 e5 mov %esp,%ebp
23: 83 ec 10 sub $0x10,%esp
26: c7 44 24 0c be ba fe ca movl $0xcafebabe,0xc(%esp)
2e: c7 44 24 08 ef be ad de movl $0xdeadbeef,0x8(%esp)
36: c7 44 24 04 43 82 01 00 movl $0x18243,0x4(%esp)
3e: c7 04 24 13 52 01 00 movl $0x15213,(%esp)
45: e8 fc ff ff ff call foo
4a: c9 leave
4b: c3 ret

Page 14 of 17

a) Very briefly explain what purpose is served by the first three lines of the disassembly of foo (just repeat-
ing the code in words is not sufficient). No more than one sentence should be necessary here.

b) Note that in foo (C version), each of the four arguments are accessed in turn. The assembly dump of
foo is commented to show where this is done. Recall that the current %ebp value points to where the
pushed old base pointer resides, and immediately above that is the return address from the function call.
Write into the gaps in the disassembly of foo the offsets from %ebp needed to access each of the four
arguments a, b, c, and d. (Hint: Look at how they are arranged in bar before the call.)

Page 15 of 17

GCC has a compile option called -fomit-frame-pointer. When given this flag in addition to the
previous flags, the function foo is compiled like this:

00000000 <foo>
83 ec 40 sub $0x40,%esp

8b 44 24 44 mov ____(%esp),%eax //temp = a;
89 04 24 mov %eax,(%esp) //buf[0] = temp;

8b 44 24 48 mov ____(%esp),%eax //temp = b;
89 44 24 04 mov %eax,0x4(%esp) //buf[1] = temp;

8b 44 24 4c mov ____(%esp),%eax //temp = c;
89 44 24 08 mov %eax,0x8(%esp) //buf[2] = temp;

8b 44 24 50 mov ____(%esp),%eax //temp = d;
89 44 24 0c mov %eax,0xc(%esp) //buf[3] = temp;
83 c4 40 add $0x40,%esp
c3 ret

c) What is the difference between the first few lines of foo in the first compilation and in this compilation?
What does this mean about what the stack frame looks like? (Consider drawing a before/after picture.)

Page 16 of 17

d) Note what has changed in how the arguments a, b, c, d and the stack-allocated buffer are accessed:
they are now accessed relative to %esp instead of %ebp. Considering that the arguments are in the
same place when foo starts as last time, and recalling what has changed about the stack this time around
(note: the pushed return address is still there!), fill in the blanks on the previous page to correctly access
the function’s arguments.

e) Consider what the compiler has done: foo is now using its stack frame without dealing with the base
pointer at all... and, in fact, all functions in the program compiled with -fomit-frame-pointer
also do this. What is a benefit of doing this? (0-point bonus question: What is a drawback?)

Page 17 of 17

