Carnegie Mellon

Midterm Review

15-213: Introduction to Computer Systems
October 15, 2012

Instructor:

Carnegie Mellon

Agenda

e Midterm tomorrow!
— Cheat sheet: One 8.5 x 11, front and back

* Review
— Everything up to caching

e Questions

Carnegie Mellon

Brief Overview of Topics

e Labs!

— We try to reward people who did them well.

 Data Representation
— Primitive types
— Floating Point
— Arrays
— Structs

Brief Overview of Topics

e Assembly
— Registers
— Memory addressing
— Control flow
— Stack discipline
— Translation to C

e Caching
— Locality
— The cache itself
— Miss / hit analysis
— Blocking

Primitive Types

e Recall datalab — bit operators
e Sizes of primitive types
e Casting

— Sign extension, truncation

e Signed vs. Unsighed

— If unsigned and signed are mixed in a single
expression, signed values are implicitly cast to
unsigned

e Two’s Complement

Carnegie Mellon

Floating Point

* Sign, Exponent, Mantissa
— (—1)Sx M x 2E

e Bias (271 —1)

e Denormalized (exp = 000...000, M = O.FFF...FFF, E = 1 — bias)
— Small values close to zero.

e Special Values (exp =111...111)
— +/-inf, NaN

e Normalized (M = 1.FFF...FFF, E = exp — bias)
— Everything else

 Rounding
— When to round to even

Floating Point - Example

Floating point encoding. Consider the following 5-bit floating point representation based on the IEEE
floating point format. This format does not have a sign bit — it can only represent nonnegative numbers.

o There arec &k = 3 exponent bits. The exponent bias is 3.
¢ There are n = 2 fraction bits.

Recall that numeric values are encoded as a value of the form V = M x 27, where F is the exponent after
biasing, and M is the significand value. The fraction bits encode the significand value M using either a
denormalized (exponent field 0) or a normalized representation (exponent field nonzero). The exponent F/
is given by F = 1 — Bias for denormalized values and ¥ = e — Bias for normalized values, where ¢ is the
value of the exponent field exp interpreted as an unsigned number.

Below, vou are given some decimal values, and your task it to encode them in floating point format. In
addition, you should give the rounded value of the encoded floating point number. To get credit, vou must
give these as whole numbers (e.g., 17) or as fractions in reduced form (e.g., 3/4). Any rounding of the
significand is based on reund-to-even, which rounds an unrepresentable value that lies halfway between
two representable values to the nearest even representable value.

Value Floating Point Bits Rounded value

9/32 001 00 1/4
1

12
11
1/8

7/32

Carnegie Mellon

Structs

e Padding and alignment

e Data type size vs. Alignment

— On 32-bit x86 Linux, a double is eight bytes wide
by has four-byte alignment

e X86 vs. x86-64
— Pointer width
— Some other primitives

e Alignment rules (Windows vs. Linux)
 What accessing looks like in assembly

Struct - Example

Take the struct below compiled on Linux 32-bit:

struct my_struct /[
short b;
int x;
zhort =;
long =z;
char c¢[5];
long long a;
char q;

1. Please lay out the struct in memory below (each cell is 1 byte). Please shade in boxes used for padding.

e R
| \ \ | \ \ \ | \
e e et e
e S e A &
| \ \ | \ \ \ | \
e ————+
e R A
| \ \ | \ \ \ | \
s B T
s L S e e
| \ \ | \ \ \ | \
e St st
s L S St
| \ \ | \ \ \ | \
s S e Rttt

Carnegie Mellon

Assembly

* Registers
— Stack pointer: %esp
— Frame pointer: %ebp
— Program counter: %eip
— Return value: %eax

— General purpose
e Caller vs. Callee saved

e Equivalent registers in x86-64
e Differences between x86 and x86-64

Carnegie Mellon

Assembly

* |nstructions
— Addressing: lea, mov
— Arithmetic: add, sub, imul, idiv
— Stack manipulation: push, pop, leave
— Conditionals: cmp, test
— Local jumps: jmp, je, jg, jle, etc.
— Procedure calls: call, ret
e What do they do?

e How do certain calls change the stack?

Assembly - Example

Use the x86_64 assembly to fill in the C function below

0x0000000000400498
0x000000000040049a
0x00000000004004%¢
0x000000000040045d
0x00000000004004%e
0x00000000004004a2
0x00000000004004a5
0x00000000004004a8
0x00000000004004aa
0x00000000004004ac
0x00000000004004af
0x00000000004004b4
0x00000000004004bs
0x00000000004004k9
0x00000000004004bb
0x00000000004004be
0x00000000004004c2
0x00000000004004c5
0x00000000004004c7
0x00000000004004c¢hk
0x00000000004004cc
0x00000000004004cd
0x00000000004004cf
0x000000000040044d1

void mystery(int

<mystery+0>:
<mystery+2>:
<mystery+4d>:
<mystery+5>:
<mystery+6>:

<mystery+10>:
<mystery+13>:
<mystery+16>:
<mystery+18>:
<mystery+20>:
<mystery+23>:
<mystery+Z8>:
<mystery+30>:
<mystery+33>:
<mystery+35>:
<mystery+38>:
<mystery+42>:
<mystery+45>:
<mystery+47>:
<mystery+51l>:
<mystery+52>:
<mystery+53>:
<mystery+55>:
<mystery+57>:

(«funecP) (int),

push
push
push
push
sub
mov
mov
Lest
jle
mov
mov
mov
callg
mov
add
add
cnp
jne
add
pop
pop
pop
pop
retg

int afll,

$rl3

$ri12

srbp

Erbx

S0x8, %rsp
%rdi, %rl3
%edx, $rilz2d
$edx, fedx
0x4004c7 <mystery+47>
%¥rsi, ¥rbx
S0x0, febp
{(%rbx), %edi
*Er13

$eax, (%rbx)
50x1, %ebp
S0x4d, 5rbx
$rl12d, %ebp
0x4004bd4 <mystery+28>
S0x8, &rsp
Brbx

Frbp

&rl2

%rl3

int n) {

Caching

* Dimensions: S, E, B
— S: Number of sets
— E: Associativity — number of lines per set

— B: Block size — number of bytes per block (1 block per
line)

 Why do caches exist? When do they help?
 Why have main memory at all, if cache is so fast?
 Why use LRU for eviction?

e Recall arrays are accessed in row-major order...

Caching - Example

Cache operation. Assume a cache memory with the following properties:

¢ The cache size (C') is 512 bytes (contains 512 data bytes)
¢ The cache uses an LRU (least-recently used) policy for eviction.

¢ The cache is initially empty.

Suppose that for the following sequence of addresses sent to the cache, 0, 2, 4, 8, 16, 32, the hit rate is 0.33.
Then what 1s the block size (B) of the cache?

A. B =4 bytes
B. B = 8 bytes
C. B = 16 bytes

D. None of the above.

Carnegie Mellon

Questions/Advice

e Relax!
 Work past exams.

e Email us (15-213-staff@cs.cmu.edu)

	Slide Number 1
	Agenda
	Brief Overview of Topics
	Brief Overview of Topics
	Primitive Types
	Floating Point
	Floating Point - Example
	Structs
	Struct - Example
	Assembly
	Assembly
	Assembly - Example
	Caching
	Caching - Example
	Questions/Advice

