Cachelab
Recitation 7

Outline

Memory organization

Caching

— Different types of locality

— Cache organization

Cachelab

— Tips (warnings, getopt, files)

— Part (a) Building Cache Simulator
— Part (b) Efficient Matrix Transpose

Blocking

Memory Hierarchy

Registers

SRAM

We will discuss this interaction

DRAM

Local Secondary storage

Remote Secondary storage

SRAM vs DRAM tradeoft

« SRAM (cache)
— Faster (L1 cache: 1 CPU cycle)
— Smaller (Kilobytes (L1) or Megabytes (L2))
— More expensive and “energy-hungry”

 DRAM (main memory)
— Relatively slower (hundreds of CPU cycles)
— Larger (Gigabytes)
— Cheaper

Caching

 Temporal locality

— A memory location accessed is likely to be
accessed again multiple times in the future

— After accessing address X in memory, save the
bytes in cache for future access

e Spatial locality

— If a location is accessed, then nearby locations are
likely to be accessed in the future.

— After accessing address X, save the block of
memory around X in cache for future access

Memory Address

 64-bit on shark machines

memory address

tag set index block offset

 Block offset: b bits
 Setindex: s bits

Cache

« Acache is a set of 2*s cache sets

* A cache set Is a set of E cache lines
— E Is called associativity
— If E=1, it is called “direct-mapped”

« Each cache line stores a block
— Each block has 2*b bytes

Cachelab

Warnings are errors!

Include proper header files

Part (a) Building a cache simulator

Part (b) Optimizing matrix transpose

Warnings are Errors

* Strict compilation flags

* Reasons:
— Avoid potential errors that are hard to debug
— Learn good habits from the beginning

* Add “~-Werror” to your compilation flags

Missing Header Files

 |f function declaration is missing
— Find corresponding header files
— Use: man <function-name>

* Live example
— man 3 getopt

Getopt function

ETOPT (3] Linux Programmer's Manual GETOPT (3]
LME

getopt - Parse command-line options

Hinclude <unistd.h>

int getoptiint argo, char * const arogv[],
const char foptstring) !

extern char ¥Yoptard:
extern int optind, opterr, optopt;

f#idefine GNU SOURCE
f#include <getopt.h>

int getopt long(int arge, char * const argv[],
oonst char *optstring,
Cconst struct option *longopts, int *Flongindex) ;

int getopt long only(int arge, char * const argv[].
const char *optstring,
Cconst struct option Ylongopts, int ¥longindex)

PEZCRIPTICH
The getopti] function parses the command-line argumnents. It=s argquments argce and argwy are the argument
count and array as passed to the mwain() function on program invocation. An elewment of argvy that starts
and iz not exactly "-" ar ptioh element. The characters of this element

We want you to use getopt!

* You don’t have t, but why waste time
reinventing the wheel?

* Your programs MUST us the same command

line arguments as the reference programs or
the autograder will not work

Part (a) Cache simulator

A cache simulator is NOT a cache!

— Memory contents NOT stored
— Block offsets are NOT used
— Simply counts hits, misses, and evictions

* Your cache simulator need to work for
different s, b, E, given at run time.

* Use LRU replacement policy

Files

#include <stdio.h>

FILE *my_fp=fopen(char * filename, char *mode)
— Mode = “r” for read, “w+” for read/write, “w” for a new file
— Returns NULL (or 0) if opening fails
fscanf(fp,char *format, pointers to vars ...
— Same formats as printf
— Returns # of items scanned
— Returns EOF at the end of the file
— Man fscanf for details

— If reading a string, watch out for string length! Remember buf
lab. Stops at white space

fclose(fp) when done with the file

Cache simulator: Hints

* A cache isjust 2D array of cache lines:
— struct cache_line cache[S][E];
— S =2A7s, isthe number of sets
— E Is associativity
* Each cache_line has:
— Valid bit
— Tag
— LRU counter

Part (b) Efficient Matrix Transpose

« Matrix Transpose (A -> B)
Matrix B
1 5

5 6 7 8
9 10 11 12

13 14 15 16 4 8 12 16

Matrix A
1 2

2 6 10 14

3 7 11 15

Part (b) Efficient Matrix Transpose

« Matrix Transpose (A -> B)
« Suppose block size is 8 bytes (2 ints)

Matrix A Matrix B

-

5 6 7 8 2
9 10 11 12

13 14 15 16

Access A[0][0] cache miss
Access B[0][0] cache miss Question: After we handle

Access A[O][1] cache hit 1&2. Should we handle 3&4
Access B[1][0] cache miss first, or 5&6 first ?

Blocking

 What inspiration do you get from previous
slide ?
— Divide matrix into sub-matrices
— This is called blocking (CSAPP2e p.629)

— Size of sub-matrix depends on
* cache block size, cache size, input matrix size

— Try different sub-matrix sizes

 We hope you invent more tricks to reduce the
number of misses |

Part (b)

« Cache:
— You get 1 kilobytes of cache
— Directly mapped (E=1)
— Block size is 32 bytes (b=5)
— There are 32 sets (s=5)
* Test Matrices:
— 32 by 32, 64 by 64, 61 by 67

