
CacheLab
Recitation 7

10/8/2012

Outline

• Memory organization

• Caching
– Different types of locality

– Cache organization

• Cachelab
– Tips (warnings, getopt, files)

– Part (a) Building Cache Simulator

– Part (b) Efficient Matrix Transpose

• Blocking

Memory Hierarchy

• Registers

• SRAM

• DRAM

• Local Secondary storage

• Remote Secondary storage

We will discuss this interaction

SRAM vs DRAM tradeoff

• SRAM (cache)

– Faster (L1 cache: 1 CPU cycle)

– Smaller (Kilobytes (L1) or Megabytes (L2))

– More expensive and “energy-hungry”

• DRAM (main memory)

– Relatively slower (hundreds of CPU cycles)

– Larger (Gigabytes)

– Cheaper

Caching

• Temporal locality
– A memory location accessed is likely to be

accessed again multiple times in the future

– After accessing address X in memory, save the
bytes in cache for future access

• Spatial locality
– If a location is accessed, then nearby locations are

likely to be accessed in the future.

– After accessing address X, save the block of
memory around X in cache for future access

Memory Address

• 64-bit on shark machines

• Block offset: b bits

• Set index: s bits

Cache

• A cache is a set of 2^s cache sets

• A cache set is a set of E cache lines

– E is called associativity

– If E=1, it is called “direct-mapped”

• Each cache line stores a block

– Each block has 2^b bytes

Cachelab

• Warnings are errors!

• Include proper header files

• Part (a) Building a cache simulator

• Part (b) Optimizing matrix transpose

Warnings are Errors

• Strict compilation flags

• Reasons:

– Avoid potential errors that are hard to debug

– Learn good habits from the beginning

• Add “-Werror” to your compilation flags

Missing Header Files

• If function declaration is missing

– Find corresponding header files

– Use: man <function-name>

• Live example

– man 3 getopt

Getopt function

We want you to use getopt!

• You don’t have t, but why waste time
reinventing the wheel?

• Your programs MUST us the same command
line arguments as the reference programs or
the autograder will not work

Part (a) Cache simulator

• A cache simulator is NOT a cache!

– Memory contents NOT stored

– Block offsets are NOT used

– Simply counts hits, misses, and evictions

• Your cache simulator need to work for
different s, b, E, given at run time.

• Use LRU replacement policy

Files

• #include <stdio.h>
• FILE *my_fp=fopen(char * filename, char *mode)

– Mode = “r” for read, “w+” for read/write, “w” for a new file
– Returns NULL (or 0) if opening fails

• fscanf(fp,char *format, pointers to vars …
– Same formats as printf
– Returns # of items scanned
– Returns EOF at the end of the file
– Man fscanf for details
– If reading a string, watch out for string length! Remember buf

lab. Stops at white space

• fclose(fp) when done with the file

Cache simulator: Hints

• A cache is just 2D array of cache lines:

– struct cache_line cache[S][E];

– S = 2^s, is the number of sets

– E is associativity

• Each cache_line has:

– Valid bit

– Tag

– LRU counter

Part (b) Efficient Matrix Transpose

• Matrix Transpose (A -> B)

 Matrix A Matrix B

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

1 5 9 13

2 6 10 14

3 7 11 15

4 8 12 16

Part (b) Efficient Matrix Transpose

• Matrix Transpose (A -> B)

• Suppose block size is 8 bytes (2 ints)

 Matrix A Matrix B

Access A[0][0] cache miss

Access B[0][0] cache miss

Access A[0][1] cache hit

Access B[1][0] cache miss

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

Question: After we handle

1&2. Should we handle 3&4

first, or 5&6 first ?

1

2

Blocking

• What inspiration do you get from previous
slide ?
– Divide matrix into sub-matrices

– This is called blocking (CSAPP2e p.629)

– Size of sub-matrix depends on
• cache block size, cache size, input matrix size

– Try different sub-matrix sizes

• We hope you invent more tricks to reduce the
number of misses !

Part (b)

• Cache:

– You get 1 kilobytes of cache

– Directly mapped (E=1)

– Block size is 32 bytes (b=5)

– There are 32 sets (s=5)

• Test Matrices:

– 32 by 32, 64 by 64, 61 by 67

