Stacks

15-213: Introduction to Computer Systems
Recitation 5: September 24, 2012

Joon-Sup Han
Section F

Carnegie Mellon

Today: Stacks

® News

B Stack discipline review
= Quick review of registers and assembly
= Stack frames

® Function calls
= x86 (IA32) and x86-64

B Example

Carnegie Mellon

News

B bomblab is due tomorrow night
= Don’t use your late days yet

= “If you wait till the last minute, it only takes a minute!”

B buflab is coming out tomorrow night
= All about stacks

B Pro-tip: we love stack questions on exams

Quick review of registers (I1A32)

B Caller saved: %eax, %ecx, %edx
= You must save these before a function call if you need them

Callee saved: %ebx, %edi, %esi

= You must save these before any work if you need them
Base pointer: %ebp

= Points to the “bottom” of a stack frame
Stack pointer: %esp

= Points to the “top” of a stack frame

Instruction pointer: %eip

= Generally don’t need to worry about this one

Carnegie Mellon

Carnegie Mellon

|A32 stack

B This is a memory region that grows down
B Confusingly, refer to the bottom of the stack as the “top”
B %esp refers to the lowest stack address

Stack “bottom”

OXFFFFEFFf

Stack growth

Stack “top”

Carnegie Mellon

pushing and popping

B |t may be helpful to remember this correspondence (1A32)
= Note: This is probably not how it actually works

pushl src ——> subl $4,%esp
movl src, (%esp)

popl dest —— movl (%esp),dest
addl $4,%esp

B %esp “points” to the top value on the stack

Quick example
pushl %eax

0x1160 0x110

Ox10c Ox10c

0x108 0x123 0x108

0x104

%espf

%eax JOx213 %eax |9x213

%edx JOx555 %edx JOx555
%esp |0x108 %esp

Carnegie Mellon

popl Z%edx

%eax |9x213

%edx

%esp

Carnegie Mellon

Stack frames

B Every function call is given a stack frame S
. %Ebp Id %
® \What does a C function need?

= Local variables (scalars, arrays, structs) I registers

= Scalars: if the compiler couldn’t allocate +
enough registers I local

Space to save callee saved registers variables

Space to put computations
_ Argument

A way to give arguments and call other I build

functions for function

A way to grab arguments call

B Use the stack!

Carnegie Mellon

Function calls

® Use the stack for function calls
® Function call

= call label Push “return address” on stack, jump to label

® Return address
= Address of the instruction immediately after the call

= Example from disassembly:
= 804854e: e8 3d 06 00 00 call 8048b90 <main>
= 8048553: 50 pushl %eax

= Return address is 9x8048553

B Returning from a function call
= ret Pop return address [(%esp)] into %eip, keep running

= Remember that the function’s actual return value must be in %eax

Carnegie Mellon

What does this look like?

= 804854e: e8 3d 06 00 00 call 8048b90 <main>
= 8048553: 50 pushl %eax

call <main>

0x110 | 0x110 I

Ox10c Ox10c

0x108 0x123 0x108 |JOx123

0x104 <€ %esp

%eip |ox804854e

%esp |0x108

Carnegie Mellon

Returning . 8048591: c3

0x123 0x123
0x8048553 0x8048553

%eip |ox8048591
%esp |0x104

Carnegie Mellon

Function calls and stack frames

B Suppose you have

int main(void)

{
int x = 3;
return sum(x, 0);

} Old %ebp

sum grabs arguments by

reaching up the caller’s stack Saved
frame! | registers

+
If we scale up this example, we | local
see that arguments should be variables
pushed in reverse order

Argument
build

Carnegie Mellon

Example (from a 213 exam | took)

(Calling Function STack Frame |

Given the following function prototypes, and initial lines of
IA32 assembly for each function, fill in the stack frame
diagram with

0x1000

registers to be saved

any arguments to the function foo

the return address
Any registers stored on the stack by the asm fragment

The location on the stack pointed to by %esp and %ebp after
execution of the sub instruction

int foo(int a, int b, int c, int d);
push %ebp

mov %esp,%sebp

push %ebx

sub $0x10, $esp

e (Bonus: How does 00 access its arguments after the sub?)

Carnegie Mellon

IA32 vs x86-64

B Remember in 64-bit this stuff is even easier
= No more frame pointer (you are free to use %ebp/%rbp)
= Many arguments are passed in registers
= More registers = less stack space needed
B Qverall a lot less stack usage
= Good for performance - see memory hierarchy
B You are expected to know how the stack works for 64-bit
= Even if no labs exercise these skills

Questions?
(stacks, bomblab, what is buflab)

(come to office hours if you need help)

