Carnegie Mellon

Proxylab

and stuff
15-213: Introduction to Computer Systems
Recitation 13: November 19, 2012

Donald Huang (donaldh)
Section M

Carnegie Mellon

Topics

Summary of malloclab
News

Threads

N
N
m Sockets
H
m Proxylab

Carnegie Mellon

Malloclab review

m Questions, comments, lessons learned?

m Starting simple and making improvements is a good way to
write code

" Nice because you can have something simple working relatively
easily

" You can test each new optimization alone
m When you write your code, write it so that it can be easily
maintained/changed

= “how can | write my explicit list so that | can change it to seglists
later?”

Carnegie Mellon

Topics

News

Threads

N
N
m Sockets
H
m Proxylab

Carnegie Mellon

News

m Last day to turn in malloc is today (if using two late days and
taking a late penalty)

m Proxylab was out last Friday

Carnegie Mellon

Topics

Threads

N
N
m Sockets
H
m Proxylab

Carnegie Mellon

Sockets

m To get a struct hostent for a domain name:
= struct hostent * gethostbyname(const char *name);
= not threadsafe, threadsafe version is gethostbyname_r
m Whatis a socket?

= To an application, a socket is a file descriptor that lets the application read/
write from/to the network

= (all Unix I/O devices, including networks, are modeled as files)

m Clients and servers communicate with each other by reading from and
writing to socket descriptors

Client l l Server
+ >

clientfd serverfd
m The main difference between regular file I/O and socket 1/O is how the
application “opens” the socket descriptors

Sockets API

m int socket(int domain, int type, int protocol);

m int bind(int socket, const struct sockaddr *address,
socklen _t address_len);

m int listen(int socket, int backlog);

m int accept(int socket, struct sockaddr *address, socklen_t
*address_len);

m int connect(int socket, struct sockaddr *address, socklen_t
address_len);

m int close(int fd);
m ssize_tread(int fd, void *buf, size_t nbyte);
m ssize_t write(int fd, void *buf, size_t nbyte);

Carnegie Mellon

Sockets API

m int socket(int domain, int type, int protocol);
= used by both clients and servers
" int sock fd =socket(PF_INET, SOCK_STREAM, IPPROTO_TCP);
" Create a file descriptor for network communication
" One socket can be used for two-way communication

Carnegie Mellon

Sockets API

m int bind(int socket, const struct sockaddr *address,
socklen _t address_len);
= used by servers

= struct sockaddr_in sockaddr;
memset(&sockaddr, 0, sizeof(sockaddr);
sockaddr.sin_family = AF_INET,;
sockaddr.sin_addr.s_addr = INADDR_ANY;
sockaddr.sin_port = htons(listenPort)
err = bind(sock_fd, (struct sockaddr *) sockaddr, sizeof(sockaddr));

= sock_fd: file descriptor of socket

" my_ addr: address to bind to, and information about it, like the port
= addrlen: size of addr struct

= Associate a socket with an IP address and port number

10

Carnegie Mellon

Sockets API

m int listen(int socket, int backlog);
= used by servers
= err = listen(sock_fd, MAX_WAITING_CONNECTIONS);
= socket: socket to listen on
= backlog: maximum number of waiting connections

m int accept(int socket, struct sockaddr *address, socklen t
*address_len);
= used by servers

® struct sockaddr_in client_addr;
socklen_t my_addr_len = sizeof(client_addr);
client_fd = accept(listener_fd, &client_addr, &my_addr_len);

= socket: socket to listen on

= address: pointer to sockaddr struct to hold client information after
accept returns

= return: file descriptor 1

Carnegie Mellon

Sockets API

m int connect(int socket, struct sockaddr *address, socklen_t
address_len);

= used by clients

= attempt to connect to the specified IP address and port described in
address

m int close(int fd);

= used by both clients and servers

= (also used for file 1/0)
= fd: socket fd to close

12

Carnegie Mellon

Sockets API

m ssize tread(int fd, void *buf, size_t nbyte);
= used by both clients and servers
= (also used for file 1/0)
= fd: (socket) fd to read from
= buf: buffer to read into
" nbytes: buf length
m ssize_t write(int fd, void *buf, size_t nbyte);
= used by both clients and servers
= (also used for file 1/0)
= fd: (socket) fd to write to
= buf: buffer to write

" nbytes: buf length

13

Overview of the Sockets Interface

Client Server
(\
socket socket
bind > open_ listenfd
open_clientfd < l
listen
Connection l /
request
\ connect [T > accept <
v y
Client / * rio_writen rio readlineb[*
Server l l . .
Session Await connection
rio_readlineb [+ rio_writen request from
‘ next client
v y
close [----- EOF ____ »rio_readlineb
y
close

14

Carnegie Mellon

Topics

N
N
H
m Threads
m Proxylab

15

Carnegie Mellon

Threads

m Similarities to processes

= each thread has its own logical control flow (its own registers, so its
own eip and stuff)

" multiple threads can be in the middle of running at the same time,
possibly on different cores

= the kernel decides when to context switch to and from a thread (or a
thread can voluntarily give up its share of cpu time by calling sleep,
pause, sigsuspend, or something similar)

m Differences with processes
" threads share code and data; processes generally don’t

" threads are less expensive to make than processes (processes are
about 2x more expensive to create and reap)

16

Threads

m Each thread has its own stack/registers, including stack
pointer and program counter (imagine what would happen

otherwise)

m Processes start out as having one thread, and they also have
code, data, page directory/table, file descriptors, and some
other things associated with them

17

Carnegie Mellon

Threads: pthreads interface

m Creating/reaping threads
= pthread_create
= pthread_join

m To getyour thread ID
= pthread_self

m Terminating threads
= pthread cancel
= pthread_exit

m synchronizing access to shared variables
" pthread_mutex_init
= pthread _mutex_[un]lock
= pthread rwlock init
= pthread_rwlock [wr]rdlock

18

Carnegie Mellon

Threads

m A thread terminates implicitly when its top-level thread
routine returns

m A thread terminates explicitly by calling pthread _exit(NULL)

m pthread_exit(NULL) only terminates the current thread,
NOT the process

m exit(0) terminates ALL the threads in the process (meaning
the whole process terminates

m pthread_cancel(tid) terminates the thread with id equal to
tid

19

Carnegie Mellon

Threads

m Joinable threads can be reaped and killed by other threads
" must be reaped with pthread_join to free memory and resources

m Detached threads cannot be reaped or killed by other
threads

" resources are automatically reaped on termination
m Default state is joinable
= use pthread detach(pthread_self()) to make detached

20

Multithreaded Hello World

/* hello.c - Pthreads "hello, world" program */

#include "csapp.h"

void *thread(void *vargp) ; > T’(’:;Z:Z:%Z‘Zie)s

int main() {
pthread t tid;
int i; | Start routine
for(i = 0; i < 42; ++i) {
pthread create(&tid, NULL, thread, NULL);
pthread join(tid, NULL); “——{_| Start routine
} arguments
exit (0);
}

return value

/* thread routine */

void *thread(void *vargp) {
printf ("Hello, world!\n");
return NULL;

}

21

Carnegie Mellon

Topics

Proxylab

22

Carnegie Mellon

Proxylab: what a proxy is??

m intermediary between client and server

GET http://www.google.com/ HTTP/1.0 n
“ GET http://www.google.com/ HTTP/1.0 n

23

Carnegie Mellon

Proxylab

m write a web proxy
" multi-threaded
= caching

m should work for most sites (not https connections though)
® cnn.com
= google.com
= youtube.com
" (not facebook.com)

m Forwards requests from the client to the server

® acts as a server to the client, but as a client to the server the client is
asking you to read from

24

Carnegie Mellon

Proxylab: recommended progress

m implement a sequential proxy

= this proxy will be very slow in loading webpages

m upgrade to multithreaded proxy
= should be decently fast

m add caching

= this involves some multithreading issues we’ll talk about solving next
week

m You are not given any tests, so make sure you test your
proxy well on your own!

25

Carnegie Mellon

Questions?
(sockets, proxylab, what a proxy is??)

(come to office hours if you need help)

26

