
Andrew login ID:

Full Name:

CS 15-213, Spring 2003

Exam 1
February 27, 2003

Instructions:

• Make sure that your exam is not missing any sheets, then write your full name and Andrew login ID
on the front.

• Write your answers in the space provided below the problem. If you make a mess, clearly indicate
your final answer.

• The exam has a maximum score of 60 points.

• The problems are of varying difficulty. The point value of each problem is indicated. Pile up the easy
points quickly and then come back to the harder problems.

• This exam is OPEN BOOK. You may use any books or notes you like. No electronic devices are
allowed. Good luck!

1 (1):

2 (9):

3 (8):

4 (4):

5 (8):

6 (12):

7 (10):

8 (8):

TOTAL (60):

Page 1 of 11



Problem 1. (1 points):
The correct answer to this problem is worth 1 point. An incorrect answer is worth -2 points. No answer will
be scored as 0 points. Note: The answer to this question was given in lecture.

The correct answer to this problem is:

Page 2 of 11



Problem 2. (9 points):
Assume we are running code on an8-bit machine using two’s complement arithmetic for signed integers.
Short integers are encoded using4 bits. Sign extension is performed whenever a short is casted to an int.
For this problem, assume that all shift operations are arithmetic. Fill in the empty boxes in the table below.

int i = -11;
unsigned ui = i;
short s = -2;
unsigned short us = s;

Note: You need not fill in entries marked with ”–”. TMax denotes the largest positive two’s complement
number and TMin denotes the minimum negative two’s complement number. Finally, you may use hexidec-
imal notation for your answers in the “Binary Representation” column.

Expression Decimal Representation Binary Representation

Zero 0

– −3

i

i >> 4

ui

(int) s

(int)(s ˆ 7)

(int) us

TMax

TMin

Page 3 of 11



Problem 3. (8 points):
Consider the following 7-bit floating point representation based on the IEEE floating point format:

• There is a sign bit in the most significant bit.

• The next 3 bits are the exponent. The exponent bias is 3.

• The last 3 bits are the fraction.

• The representation encodes numbers of the form:V = (−1)s ×M × 2E , whereM is the significand
andE the integer value of the exponent.

Please fill in the table below. You do not have to fill in boxes with ”——” in them.If a number is NAN
or infinity, you may disregard the M , E, and V fields below. However, fill the Description and Binary
fields with valid data.
Here are some guidelines for each field:

• Description - A verbal description if the number has a special meaning

• Binary - Binary representation of the number

• M - Significand (same as theM in the formula above)

• E - Exponent (same as theE in 2E)

• V - Fractional Value represented

Please fill theM , E, and V fields below with rational numbers (fractions) rather than decimals or
binary decimals

Description Binary M E V

—— 0 010 010

2 3
8

1 111 000

Most NegativeNormalized

Smallest PositiveDenormalized

Page 4 of 11



Problem 4. (4 points):

Consider the following assembly instructions and C functions:

080483b4 <funcX>:
80483b4: 55 push %ebp
80483b5: 89 e5 mov %esp,%ebp
80483b7: 8b 45 08 mov 0x8(%ebp),%eax
80483ba: 8d 04 80 lea (%eax,%eax,4),%eax
80483bd: 8d 04 85 f6 ff ff ff lea 0xfffffff6(,%eax,4),%eax
80483c4: 89 ec mov %ebp,%esp
80483c6: 5d pop %ebp
80483c7: c3 ret

Circle the C function below that generates the above assembly instructions:

int func1(int n) {

return n * 20 - 10;

}

int func2(int n) {

return n * 24 + 6;

}

int func3(int n) {

return n * 16 - 4;

}

Page 5 of 11



Problem 5. (8 points):
Consider the following pairs of C functions and assembly code. Draw a line connecting each C function with
the block(s) of assembly code that implements it.There is not necessarily a one-to-one correspondence.
Draw an X through any C and/or assembly code fragments that don’t have a match.

int scooby(int *a)
{

return a[4];
}

pushl %ebp
movl %esp, %ebp
movl 8(%ebp), %eax
sall $2, %eax
popl %ebp
ret

int dooby(int a)
{

return a*4;
}

pushl %ebp
movl %esp, %ebp
movl 8(%ebp), %eax
movsbl 4(%eax),%eax
popl %ebp
ret

int doo(int a)
{

return a<<4;
}

pushl %ebp
movl %esp, %ebp
movl 8(%ebp), %eax
sall $4, %eax
popl %ebp
ret

char scrappy(char *a)
{

return a[4];
}

pushl %ebp
movl %esp, %ebp
movl 8(%ebp), %eax
leal 0(,%eax,4), %eax
popl %ebp
ret

Page 6 of 11



Problem 6. (12 points):
Recently, Microsoft’s SQL Server was hit by the SQL Slammer worm, which exploits a known buffer
overflow in the SQL Resolution Service. Today, we’ll be writing our own213 Slammerthat exploits the
vulnerability introduced inbufbomb , the executable used in your Lab 3 assignment. And as such,Gets
has the same functionality as in Lab 3 except that it strips off the newline character before storing the input
string.
Consider the following exploit code, which runs the program into an infinite loop:

infinite.o: file format elf32-i386
Disassembly of section .text:

00000000 <.text>:
0: 68 fc b2 ff bf push $0xbfffb2fc
5: c3 ret
6: 89 f6 mov %esi,%esi

Here is a disassembled version of thegetbuf function inbufbomb , along with the values of the relevant
registers and a printout of the stackbefore the call toGets() .

(gdb) disas
Dump of assembler code for function getbuf:
0x8048a44 <getbuf>: push %ebp
0x8048a45 <getbuf+1>: mov %esp,%ebp
0x8048a47 <getbuf+3>: sub $0x18,%esp
0x8048a4a <getbuf+6>: add $0xfffffff4,%esp
0x8048a4d <getbuf+9>: lea 0xfffffff4(%ebp),%eax
0x8048a50 <getbuf+12>: push %eax
0x8048a51 <getbuf+13>: call 0x8048b50 <Gets>
0x8048a56 <getbuf+18>: mov $0x1,%eax
0x8048a5b <getbuf+23>: mov %ebp,%esp
0x8048a5d <getbuf+25>: pop %ebp
0x8048a5e <getbuf+26>: ret
0x8048a5f <getbuf+27>: nop
End of assembler dump.

(gdb) info registers
eax 0xbfffb2fc ecx 0xffffffff
edx 0x0 ebx 0x0
esp 0xbfffb2e0 ebp 0xbfffb308
esi 0xffffffff edi 0x804b820

(gdb) x/20xb $ebp-12
0xbfffb2fc: 0xf0 0x17 0x02 0x40 0x18 0xb3 0xff 0xbf
0xbfffb304: 0x50 0x80 0x06 0x40 0x28 0xb3 0xff 0xbf
0xbfffb30c: 0xee 0x89 0x04 0x08 0x24 0xb3 0xff 0xbf

Page 7 of 11



Here are the questions:

1. Write down the address of the location on the stack which contains the return address wheregetbuf
is supposed to return to:

0x____________________

2. Using the exploit code illustrated above, fill in the the following blanks on the stackafter the call to
Gets() . All the numbers must be in atwo character hexadecimalrepresentation of a byte. We’ve
already filled in the terminating\0 (0x00) character for you.

(gdb) x/20xb $ebp-12

0xbfffb2fc: 0x___ 0x___ 0x___ 0x___ 0x___ 0x___ 0x___ 0x___

0xbfffb304: 0x___ 0x___ 0x___ 0x___ 0x___ 0x___ 0x___ 0x___

0xbfffb30c: 0x___ 0x___ 0x___ 0x___ 0x00 0xb3 0xff 0xbf

3. During the infinite loop, what is the value of%ebp?

0x_________________________

Page 8 of 11



Problem 7. (10 points):
This problem tests your understanding of both control flow and multidimensional array layout. Consider
the following assembly code for a proceduremoo() :

moo:
pushl %ebp
movl %esp, %ebp
pushl %edi
pushl %esi
pushl %ebx
movl $0, %ecx
movl $arr1, %edi
movl $arr2+8, %esi
movl 8(%ebp), %eax
leal 0(,%eax,4), %ebx

.L5:
leal (%ecx,%ecx,2), %eax
sall $2, %eax
movl %ebx, %edx
addl (%eax,%esi), %edx
movl %edx, (%eax,%edi)
incl %ecx
cmpl $10, %ecx
jle .L5
movl %ecx, %eax
popl %ebx
popl %esi
popl %edi
popl %ebp
ret

Page 9 of 11



Based on the assembly code, fill in the blanks below inmoo’s C source code. (Note: you may only use
symbolic variables from the source code in your expressions below-donot use register names.)Hint: First
figure out what the loop variable (i) is in the assembly and what the value of M is.

#define M _____

#define N _____

int arr1[M][N];

int arr2[M][N];

int moo(int x)
{

int i;

for(__________; i < M; ________ )
{

arr1[_____][_____] = arr2[_____][_____]+______________;
}

return _______;
}

Page 10 of 11



Problem 8. (8 points):
Consider the following C declarations:

typedef struct {
char ID[2];
double weight;
double *components;
short momentum;

} Projectile;

A. Using the templates below (allowing a maximum of 24 bytes), indicate the allocation of data for
structs of typeProjectile . Mark off and label the areas for each individual element (arrays may
be labeled as a single element).Cross hatch the parts that are allocated, but not used, and be
sure to clearly indicate the end of the structure. Assume the Linux alignment rules discussed in
class.

Projectile:

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
| |
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+

B. How would you define theModified structure to minimize the number of bytes allocated for the
structure using the same fields as theProjectile structure?

typedef struct {

} Modified;

C. What is the value ofsizeof(Modified) ?

Page 11 of 11


