Carnegie Mellon

Intro to Some Advanced Topics

15-213 / 18-213: Introduction to Computer Systems
27t Lecture, Dec. 4, 2012

Instructors:
Dave O’Hallaron, Greg Ganger, and Greg Kesden

Carnegie Mellon

Today

m Library interpositioning
m Map-reduce

m Virtual Machines

m Cloud Computing

Carnegie Mellon

Dynamic Linking at Load-time (review)

mailI2.C vector.h unix> gcc -shared -o libvector.so \

Relocatable
object file

Partially linked
executable object file

Fully linked
executable
in memory

addvec.c multvec.c

Translators /
(cpp, ccl, as) libc.so

l libvector.so
main2.o Relocation and symbol table
l info
Linker (1d)
p2
Loader libec.so
(execve) libvector.so

Code and data

\ 4

Dynamic linker (1d-1inux. so)

Carnegie Mellon

Dynamic Linking at Run-time (review)

#include <stdio.h>
#include <dlfcn.h>

int x[2] = {1, 2};
int y[2] {3, 4};
int z[2];

int main ()

{
void *handle;
void (*addvec) (int *, int *, int *, int);
char *error;

/* Dynamically load the shared 1lib that contains addvec() */
handle = dlopen("./libvector.so", RTLD LAZY) ;
if ('handle) {

fprintf (stderr, "%$s\n", dlerror()):;

exit(1l);

Carnegie Mellon

Dynamic Linking at Run-time

/* Get a pointer to the addvec() function we just loaded */
addvec = dlsym(handle, "addvec");

if ((error = dlerror()) !'= NULL) {
fprintf (stderr, "%$s\n", error);
exit(1l);

}

/* Now we can call addvec() just like any other function */
addvec(x, vy, z, 2);
printf("z = [%d %d]\n", z[0], z[1]);

/* unload the shared library */

if (dlclose(handle) < 0) {
fprintf (stderr, "%s\n", dlerror()):;
exit (1) ;

}

return O;

Carnegie Mellon

Case Study: Library Interpositioning

m Library interpositioning : powerful linking technique that
allows programmers to intercept calls to arbitrary
functions

m Interpositioning can occur at:

= Compile time: When the source code is compiled

= Link time: When the relocatable object files are statically linked to
form an executable object file

= Load/run time: When an executable object file is loaded into
memory, dynamically linked, and then executed.

Carnegie Mellon

Some Interpositioning Applications

m Security
= Confinement (sandboxing)
= Interpose calls to libc functions.
= Behind the scenes encryption
= Automatically encrypt otherwise unencrypted network
connections.
m Monitoring and Profiling
= Count number of calls to functions
® Characterize call sites and arguments to functions
= Malloc tracing
= Detecting memory leaks
= Generating address traces

Carnegie Mellon

Example Program

#include <stdio.h> m Goal: trace the addresses
#include <stdlib.h>

#include <malloc.h> and sizes of the allocated
_ _ and freed blocks, without
?nt main () modifying the source code.

free (malloc(10)) ;
printf ("hello, world\n");
exit (0) ; m Three solutions: interpose

} on the l1ibmalloc and
hello.c . .
free functions at compile
time, link time, and load/
run time.

Carnegie Mellon

Compile-time Interpositioning

#ifdef COMPILETIME
/* Compile-time interposition of malloc and free using C
* preprocessor. A local malloc.h file defines malloc (free)

* as wrappers mymalloc (myfree) respectively.

*/

#include <stdio.h>
#include <malloc.h>

/%
* mymalloc - malloc wrapper function
*/
void *mymalloc(size t size, char *file, int line)
{
void *ptr = malloc(size) ;
printf ("%$s:%d: malloc(%d)=%p\n", file, line, (int)size,
ptr) ;
return ptr;
} mymalloc.c

Carnegie Mellon

Compile-time Interpositioning

#define malloc(size) mymalloc(size, @ FILE , LINE)
fdefine free(ptr) myfree(ptr, @ FILE , LINE)

void *mymalloc(size t size, char *file, int line);
void myfree (void *ptr, char *file, int line);
malloc.h

linux> make helloc

gcc -02 -Wall -DCOMPILETIME -c mymalloc.c

gcc -02 -Wall -I. -o helloc hello.c mymalloc.o
linux> make runc

./helloc

hello.c:7: malloc(10)=0x501010

hello.c:7: free(0x501010)

hello, world

10

Carnegie Mellon

Link-time Interpositioning

#ifdef LINKTIME
/* Link-time interposition of malloc and free using the

static linker's (1ld) "--wrap symbol" flag. */
#include <stdio.h>

void * real malloc(size t size);
void real free(void *ptr);

/*

= wrap malloc - malloc wrapper function

*/
void * wrap malloc(size t size)
{
void *ptr = real malloc(size);
printf ("malloc (%d) = %p\n", (int)size, ptr);
return ptr;
} mymalloc.c

1

Carnegie Mellon

Link-time Interpositioning

linux> make hellol

gcc -02 -Wall -DLINKTIME -c mymalloc.c

gcc -02 -Wall -Wl,--wrap,malloc -W1l,--wrap, free \
-0 hellol hello.c mymalloc.o

linux> make runl

./hellol
malloc(10) = 0x501010
free (0x501010)

hello, world

m The “-W1” flag passes argument to linker

m Telling linker “--wrap,malloc” tells it to resolve
references in a special way:
" Refstomalloc should beresolvedas wrap malloc
" Refsto @ real malloc should beresolvedasmalloc

12

Carnegie Mellon

#ifdef RUNTIME
/* Run-time interposition of malloc and free based on
* dynamic linker's (ld-linux.so) LD _ PRELOAD mechanism x/
#define GNU_SOURCE
#include <stdio.h>

ity Load/Run-time
Interpositioning

void *malloc(size_t size)

{

static void *(*mallocp) (size_t size);
char *error;
void *ptr;

/* get address of libc malloc */
if ('mallocp) {
mallocp = dlsym(RTLD NEXT, "malloc");

if ((error = dlerror()) !'= NULL) {
fputs (error, stderr)
exit (1) ;

}

ptr = mallocp(size) ;
printf ("malloc(%d) = %p\n", (int)size, ptr);
return ptr;
} mymalloc.c

13

Carnegie Mellon

Load/Run-time Interpositioning

linux> make hellor

gcc -02 -Wall -DRUNTIME -shared -fPIC -o mymalloc.so mymalloc.c
gcec -02 -Wall -o hellor hello.c

linux> make runr

(LD_PRELOAD="/usr/1ib64/libdl.so ./mymalloc.so" ./hellor)
malloc(10) = 0x501010

free (0x501010)

hello, world

m The LD PRELOAD environment variable tells the dynamic
linker to resolve unresolved refs (e.g., tomalloc) by looking
in 1ibdl.so and mymalloc. so first.

= 1ibdl. so necessary to resolve references to the dlopen
functions.

14

Carnegie Mellon

Interpositioning Recap

m Compile Time

= Apparent callstomalloc/free get macro-expanded into calls to
mymalloc/myfree

m Link Time
= Use linker trick to have special name resolutions
 malloc = wrap malloc

. real malloc 2> malloc

m Load/Run Time

" |Implement custom version of malloc/free that use dynamic
linking to load library malloc/free under different names

15

Carnegie Mellon

Today

m Library interpositioning
m Map-reduce

m Virtual Machines

m Cloud Computing

16

Parallel Programming Building Blocks

m Not usually done fully “by hand”

= Major parallel programming exploits building blocks

= For programming efficiency and portability
m Example: OpenMP

= APl and framework for parallel execution

= for “shared memory” parallel programming

= such as many-core systems

m Example: MPI (Message Passing Interface)

= APl and middleware for multi-machine parallel execution
m Example: OpenGL

= APl and framework for high-performance graphics

" includes mapping to popular graphics accelerators and “GPUs”

m Example: Map-Reduce...

17

Map-Reduce Programming

m Easy-to-use API for data-parallel programs

= “data-parallel” means that different data processed in parallel
= by the same sub-program

® partial results can then be combined
m Programmer writes two functions
= Map(kl, v1): outputs a list of [k2, v2] pairs
= common (but not required) for map functions to filter the input
= Reduce(k2, list of v2 values): outputs a list of values (call it v3)
m Easy to make parallel
= Map instances can execute in any order
= Reduce instances can execute in any order (after all maps finish)

m Described by a 2004 Google paper
= Used extensively by Google, Facebook, Twitter, etc.
= Most use the open source (Apache) implementation called Hadoop

18

Carnegie Mellon

M-R Example: Word Frequency in Web Pages

void map(String name, String document):
// name: document name m Input and output Strings
// document: document contents = Java pseudo-code here
for each word w in document:
Emitintermediate(w, "1");

m Map breaks out each word

m Reduce counts occurrences

= |terator provides the value list

void reduce(String word, lterator partialCounts):
// word: a word
// partialCounts: a list of aggregated partial counts
intsum = 0;
for each pc in partialCounts:
sum += Parselnt(pc);
Emit(word, AsString(sum));

19

Carnegie Mellon

Visual of a Map-reduce Dataflow
Phase 1: read, map and shuffle data

s [o R o e B
s [o Y o e B e

20

Carnegie Mellon

Visual of a Map-reduce Dataflow
Phase 1: read, map and shuffle data

3533280
35383280

21

Carnegie Mellon

Visual of a Map-reduce Dataflow
Phase 1: read, map and shuffle data

N
A

22

Carnegie Mellon

Visual of a Map-reduce Dataflow
Phase 1: read, map and shuffle data

e B B B e B e

shuffle
2 e

23

Carnegie Mellon

Visual of a Map-reduce Dataflow
Phase 1: read, map and shuffle data

e B e B e

shuffle
- e

24

Carnegie Mellon

Visual of a Map-reduce Dataflow
Phase 1: read, map and shuffle data

@0

shuffle

) 00

 Sort introduces barrier that disrupts pipeline

25

Carnegie Mellon

Visual of a Map-reduce Dataflow
Phase 1: read, map and shuffle data

shuffle

 Sort introduces barrier that disrupts pipeline

26

Carnegie Mellon

Visual of a Map-reduce Dataflow
Phase 2: sort, reduce, and write data

 Sort introduces barrier that disrupts pipeline

27

Carnegie Mellon

Visual of a Map-reduce Dataflow
Phase 2: sort, reduce, and write data

s B B B e B e
s B B e B e

28

Carnegie Mellon

Visual of a Map-reduce Dataflow
Phase 2: sort, reduce, and write data

s B B B e B e
s B B B e B e

29

Carnegie Mellon

Visual of a Map-reduce Dataflow
Phase 2: sort, reduce, and write data

- E3- £33 03
- E3- B35 03

30

Carnegie Mellon

Visual of a Map-reduce Dataflow
Phase 2: sort, reduce, and write data

s B B B e B e
s B B B e B e

3

Carnegie Mellon

Visual of a Map-reduce Dataflow
Phase 2: sort, reduce, and write data

s B B B e B e
s B B B e B e

32

Carnegie Mellon

Visual of a Map-reduce Dataflow
Phase 2: sort, reduce, and write data

s B B B e B e
s B B B e B e

33

Carnegie Mellon

Visual of a Map-reduce Dataflow
Phase 2: sort, reduce, and write data

153 B35 5
153 B35

34

Carnegie Mellon

Visual of a Map-reduce Dataflow
Phase 2: sort, reduce, and write data

s B o R e B
s B o Y o e B e

35

Comments on Map-reduce

m Effective at large scale
" Google and others use it across 1000s of machines and PBs of data
= to generate search indices, translate languages, and many other things
= Used for setting sort benchmark records (e.g., TeraSort and PetaSort)

m Indirectly helped spawn shift toward Data-Intensive Computing
= in which insights are mined from lots of observation data
= Search for “Unreasonable Effectiveness of Data”
m Not the “be all / end all” for parallel programming
= Great for relatively simple data-parallel activities
= e.g., sifting through huge amounts of data

"= Not great for advanced machine learning algorithms
= 50, even newer APIs/frameworks being developed to support those

36

Carnegie Mellon

Today

m Library interpositioning
m Map-reduce

m Virtual Machines

m Cloud Computing

37

Carnegie Mellon

Virtual Machines

m Decouple physical HW reality from exposed view
= We've seen “virtual memory” and processes
= Apply same concept more generally

n «u n «u

= “virtual disks”, “virtual networks”, “virtual machines”, etc.

m Why virtual machines?
= Flexibility
= Efficiency
= Security
m Virtual machines (VMs) are increasingly common
" Linux KVM, VirtualBox, Xen, Vmware, MS Virtual Server
= Autolab autograding backend uses VMs
"= Enable cloud computing:
= Proprietary cloud services: EC2, Rackspace, Compute Engine
= Open source cloud system: OpenStack

38

Carnegie Mellon

Today

Library interpositioning
Map-reduce

|
|
m Virtual Machines
|

Cloud Computing

39

Carnegie Mellon

What is Cloud Computing?

m Short version:
= Using someone else’s computers (and maybe software)
= instead of buying/maintaining one’s own
= elastic and on-demand (pay for what need)
= Sharing those computers with other “tenants”
= instead of having them all-to-oneself

m Longer version:
= See NIST’s more complex definition (2 pages!)
= a more technical and comprehensive statement
= notes multiple styles, along multiple dimensions

40

Carnegie Mellon

Why Cloud Computing?

m Huge potential benefits
= Consolidation
= Higher server utilization (7-25% -> 70+%)
= Economies of scale
= E.g., HP went from 80+ data centers to 6
— and saved $S1B/year... over 60% of total annual expense
= Aggregation
= One set of experts doing it for many
— Instead of each for themselves

m Rapid deployment
= Rent when ready and scale as need
= Rather than specify, buy, deploy, setup, then start

4

Carnegie Mellon

3 Styles of Cloud Computing

m laasS - Infrastructure as a Service
® Data center rents VMs to users
= Ex: Amazon EC2
= User must install SW (platform & application)
m Paa$S - Platform as a Service
= Offer ready-to-run platform solutions
= Ex: Google App Engine, Microsoft Azure
= User develops/installs applications
m SaaS - Software as a Service

= Complete application solutions are offered
= Ex: Gmail, Salesforce.com, etc.

42

Carnegie Mellon

Cloud Computing Accessibility

m Private vs. Public Clouds
= Private cloud: one organization
= Multiple groups sharing a common infrastructure
= Incredibly popular in business world, right now
® Public cloud: many organizations
= e.g., Internet offerings

43

Carnegie Mellon

Deeper: Operational Costs Out of Control

m Power and cooling
= Now on par with purchase costs
" Trends making it worse every year
= Power/heat go up with speed
= Cluster sizes increase due to commodity pricing

EPA report about 2011 data center power usage:

In 2006, 1.5% of total U.S. electricity consumption

“Under current efficiency trends, national energy consumption
by servers and data centers could nearly double again in another
five years (i.e., by 2011) to more than 100 billion kWh.”

[i.e., 2-3% of total U.S. consumption]

44

A few “fun” data center energy facts

“Google’s power consumption ... would incur an annual
electricity bill of nearly $38 million”
[Qureshi:sigcommO09]

“Energy consumption by ... data centers could nearly double ...
(by 2011) to more than 100 billion kWh, representing a $7.4
billion annual electricity cost”

[EPA Report 2007]

Annual cost of energy for Google, Amazon, Microsoft

Annual cost of all first-year CS PhD Students

45

Carnegie Mellon

Deeper: Operational Costs Out of Control

m Power and cooling
= Now on par with purchase costs
" Trends making it worse every year
= Power/heat go up with speed
= Cluster sizes increase due to commodity pricing

m Administration costs
= Often reported at 4-7X capital expenditures
" Trends making it worse every year
= Complexity goes up with features, expectations and cluster size
= Salaries go up while equipment costs go down

46

Carnegie Mellon

Thanks!

47

