Carnegie Mellon

Thread-Level Parallelism

15-213 / 18-213: Introduction to Computer Systems
26t Lecture, Nov 29, 2012

Instructors:

Dave O’Hallaron, Greg Ganger, and Greg Kesden

Carnegie Mellon

Today

m Thread safety

m Parallel Computing Hardware
= Multicore
= Multiple separate processors on single chip

m Thread-Level Parallelism
= Splitting program into independent tasks
= Example: Parallel summation
= Some performance artifacts
" Divide-and conquer parallelism
= Example: Parallel quicksort

Carnegie Mellon

Crucial concept: Thread Safety

m Functions called from a thread must be thread-safe

m Def: A function is thread-safe iff it will always produce
correct results when called repeatedly from multiple
concurrent threads.

m Classes of thread-unsafe functions:
= (Class 1: Functions that do not protect shared variables
= Class 2: Functions that keep state across multiple invocations
® (Class 3: Functions that return a pointer to a static variable
= (Class 4: Functions that call thread-unsafe functions

Thread-Unsafe Functions (Class 1)

m Failing to protect shared variables
" Fix: Use P and V semaphore operations

= Example: goodecnt.c
= |ssue: Synchronization operations will slow down code

Carnegie Mellon

Thread-Unsafe Functions (Class 2)

m Relying on persistent state across multiple function invocations
= Example: Random number generator that relies on static state

static unsigned int next = 1;

/* rand: return pseudo-random integer on 0..32767 */
int rand(void)
{

next = next*1103515245 + 12345;

return (unsigned int) (next/65536) % 32768;

}

/* srand: set seed for rand() */
void srand(unsigned int seed)

{

next = seed;

}

Carnegie Mellon

Thread-Safe Random Number Generator

m Pass state as part of argument

= and, thereby, eliminate static state

/* rand r - return pseudo-random integer on 0..32767 */

int rand r(int *nextp)
{
*nextp = *nextp*1103515245 + 12345;
return (unsigned int) (*nextp/65536) % 32768;

m Consequence: programmer using rand r must maintain seed

Carnegie Mellon

Thread-Unsafe Functions (Class 3)

m Returning a pointer to a
static variable

m Fix 1. Rewrite functionso |/* lock-and-copy version */
char *ctime ts(const time t *timep,

caller passes address of char *privatep)
variable to store result {
char *sharedp;
= Requires changes in caller and
Ca”ee P (&mutex) 5
. sharedp = ctime (timep) ;
m Fix 2. Lock-and-copy strcpy (privatep, sharedp) ;
V (&mutex) ;

= Requires simple changes in

. return privatep;
caller (and none in callee) }

" However, caller must free
memory.

Carnegie Mellon

Thread-Unsafe Functions (Class 4)

m Calling thread-unsafe functions

= Calling one thread-unsafe function makes the entire function that calls it
thread-unsafe

" Fix: Modify the function so it calls only thread-safe functions ©

Carnegie Mellon

Reentrant Functions

m Def: A function is reentrant iff it accesses no shared
variables when called by multiple threads.
" |mportant subset of thread-safe functions
= Require no synchronization operations

= Only way to make a Class 2 function thread-safe is to make it
reentrant (e.g.,, rand r)

All functions

Thread-safe
functions

Thread-unsafe
Reentrant functions

functions

Carnegie Mellon

Thread-Safe Library Functions

m All functions in the Standard C Library (at the back of your
K&R text) are thread-safe

= Examples:malloc, free, printf, scanf

m Most Unix system calls are thread-safe, with a few

exceptions:
Thread-unsafe function Class Reentrant version
asctime 3 asctime r
ctime 3 ctime r
gethostbyaddr 3 gethostbyaddr r
gethostbyname 3 gethostbyname r
inet ntoa 3 (none)
localtime 3 localtime r
rand 2 rand r

10

Carnegie Mellon

Today

m Thread safety

m Parallel Computing Hardware
= Multicore
= Multiple separate processors on single chip
= Hyperthreading
= Multiple threads executed on a given processor at once

m Thread-Level Parallelism
= Splitting program into independent tasks
= Example: Parallel summation
= Some performance artifacts
" Divide-and conquer parallelism
= Example: Parallel quicksort

1

Carnegie Mellon

Multicore Processor

L3 unified cache
(shared by all cores)

i Core 0 Core n-1 E
i Regs Regs !
L L1 L1 L1 !
i d-cache| | i-cache ses d-cache| | i-cache ;
i L2 unified cache L2 unified cache E

Main memory

m Intel Nehalem Processor
= E.g., Shark machines

= Multiple processors operating with coherent view of memory
12

Carnegie Mellon

Exploiting parallel execution

m So far, we’ve used threads to deal with 1/0 delays

= e.g., one thread per client to prevent one from delaying another

m Multi-core CPUs offer another opportunity
= Spread work over threads executing in parallel on N cores
" Happens automatically, if many independent tasks

= e.g., running many applications or serving many clients
= Can also write code to make one big task go faster

= by organizing it as multiple parallel sub-tasks

m Shark machines can execute 16 threads at once

= 8 cores, each with 2-way hyperthreading (not covered)
" Theoretical speedup of 16X

= never achieved in our benchmarks

13

Summation Example

m Sum numbers O, ..., N-1
= Should add up to (N-1)*N/2
m Partition into K ranges
= |N/K] values each
= Accumulate leftover values serially
m Method #1: All threads update single global variable

= 1A: No synchronization
= 1B: Synchronize with pthread semaphore
® 1C: Synchronize with pthread mutex
= “Binary” semaphore. Only values 0 & 1

14

Accumulating in Single Global Variable:

Declarations

typedef unsigned long data t;
/* Single accumulator */
volatile data t global sum;

/* Mutex & semaphore for global sum */
sem_ t semaphore;
pthread mutex t mutex;

/* Number of elements summed by each thread */
size t nelems per thread;

/* Keep track of thread IDs */
pthread t tid[MAXTHREADS] ;

/* Identify each thread */
int myid[MAXTHREADS] ;

15

Accumulating in Single Global Variable:
Operation

nelems_per_thread = nelems / nthreads;

/* Set global value */
global sum = 0;

/* Create threads and wait for them to finish */
for (i = 0; i < nthreads; i++) {
myid[i] = i;
Pthread create(&tid[i], NULL, thread fun, é&myid[i]);
}
for (i = 0; i < nthreads; i++)
Pthread join(tid[i], NULL);

result = global sum;
/* Add leftover elements */

for (e = nthreads * nelems per thread; e < nelems; e++)
result += e;

16

Carnegie Mellon

Thread Function: No Synchronization

void *sum race(void *vargp)

{
int myid = *((int *)vargp).,
size t start = myid * nelems per thread;
size t end = start + nelems per thread;
size t 1i;

for (i = start; i < end; i++) {
global sum += i;

}
return NULL;

17

Carnegie Mellon

Unsynchronized Performance

Parallel Sums #1

N
&

|
\

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

N

[
(%)

Elapsed Seconds

[

o
U

(]

Threads

m N=230
m Best speedup = 2.86X
m Gets wrong answer when > 1 thread!

18

Carnegie Mellon

Thread Function: Semaphore / Mutex

Semaphore

void *sum sem(void *vargp)

{
int myid = *((int *)vargp)
size t start = myid * nelems per thread;
size t end = start + nelems per thread;
size t i;

for (i = start; i < end; i++) {
sem wait (&semaphore) ;
global sum += i;

sem post (&semaphore) ;

}
return NULL;

Mutex

pthread mutex lock (&mutex) ;
global sum += i;
pthread mutex unlock (&mutex) ;

19

Carnegie Mellon

Semaphore / Mutex Performance

Parallel Sums #2

/ \ ‘ —§—Race

F/- —fl—Semaphore
Mutex
100 %

1 2 3 45 6 7 8 9 10 11 12 13 14 15 16

700

600

500

B
o
o

N
o
()

Elapsed Seconds
w
o
(@»)

Threads

m Terrible Performance
= 2.5 seconds = ~10 minutes

m Mutex 3X faster than semaphore
m Clearly, neither is successful "

Carnegie Mellon

Separate Accumulation

m Method #2: Each thread accumulates into separate variable
= 2A: Accumulate in contiguous array elements

= 2B: Accumulate in spaced-apart array elements
= 2C: Accumulate in registers

/* Partial sum computed by each thread */
data_t psum[MAXTHREADS*MAXSPACING] ;

/* Spacing between accumulators */
size t spacing = 1;

21

Carnegie Mellon

Separate Accumulation: Operation

nelems_per_thread = nelems / nthreads;

/* Create threads and wait for them to finish */
for (i = 0; 1 < nthreads; i++) {
myid[i] = i;
psum[i*spacing] = O;
Pthread create(&tid[i], NULL, thread fun, é&myid[i]);
}
for (i = 0; i < nthreads; i++)
Pthread join(tid[i], NULL);

result = 0;

/* Add up the partial sums computed by each thread */
for (1 = 0; i < nthreads; i++)
result += psum[i*spacing];

/* Add leftover elements */

for (e = nthreads * nelems per thread; e < nelems; e++)
result += e;

22

Carnegie Mellon

Thread Function: Memory Accumulation

void *sum global (void *vargp)

{
int myid = *((int *)vargp).,
size t start = myid * nelems per thread;
size t end = start + nelems per thread;
size t 1i;

size t index = myid*spacing;

psum[index] = O0;

for (1 = start; i < end; i++) {
psum[index] += 1i;

}

return NULL;

23

Carnegie Mellon

Memory Accumulation Performance

Parallel Sums #3

' - =—&—Race
1 \ M Adjacent memory acc

\ == Spaced memory acc
. w

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Elapsed Seconds

Threads

m Clear threading advantage
= Adjacent speedup: 5 X
= Spaced-apart speedup: 13.3 X (Only observed speedup > 8)

m Why does spacing the accumulators apart matter?

24

Carnegie Mellon

False Sharing

psum

Y Y

Cache Block m Cache Block m+1

m Coherency maintained on cache blocks

m To update psumli], thread i must have exclusive access

" Threads sharing common cache block will keep fighting each other
for access to block

25

False Sharing Performance

False Sharing Effects

1 2 3 4 5 6 7 8 9 10 11

Threads

14

15

16

—=S1
=52
=54
S8
—4—516

= Best spaced-apart performance 2.8 X better than best adjacent

m Demonstrates cache block size = 64

= 8-byte values
" No benefit increasing spacing beyond 8

Carnegie Mellon

26

Carnegie Mellon

Thread Function: Register Accumulation

void *sum local (void *vargp)
{
int myid = *((int *)vargp).,
size t start = myid * nelems per thread;
size t end = start + nelems per thread;
size t 1i;
size t index = myid*spacing;
data t sum = 0;
for (1 = start; i < end; i++) {
sum += i;
}

psum[index] = sum; return NULL;

27

Carnegie Mellon

Register Accumulation Performance

Parallel Sums #4

2.5 \
\\ = RaCE
\\ =fll—Spaced memory acc

e —

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

N

[a=y
(92}

[

Elapsed Seconds

o
n

o

Threads

m Clear threading advantage
= Speedup =7.5X
m 2X better than fastest memory accumulation

28

Carnegie Mellon

Amdahl’s Law

m Overall problem
= T Total sequential time required

" p Fraction of total that can be spedup (0<p =< 1)
= k Speedup factor

m Resulting Performance
" T, =pT/k+(1-p)T
= Portion which can be sped up runs k times faster
= Portion which cannot be sped up stays the same
= Maximum possible speedup
= k= o0

= T,=(1-p)T

29

Carnegie Mellon

Amdahl’s Law Example

m Overall problem
= T=10 Total time required

" p=0.9 Fraction of total which can be sped up
= k=9 Speedup factor

m Resulting Performance
" T,=09*10/9+0.1*10=1.0+1.0=2.0
= Maximum possible speedup
= T,=0.1*%10.0=1.0

30

Carnegie Mellon

A More Substantial Example: Sort

m Sort set of N random numbers

m Multiple possible algorithms
= Use parallel version of quicksort

m Sequential quicksort of set of values X
®= Choose “pivot” p from X
® Rearrange X into
= L:Values<p
= R:Values=p
= Recursively sort L to get L’
= Recursively sort R to get R’
=" Returnl':p:R’

3

Carnegie Mellon

Sequential Quicksort Visualized

X

L PR
p2

32

Carnegie Mellon

Sequential Quicksort Visualized

33

Sequential Quicksort Code

void gsort serial(data t *base, size t nele) ({
if (nele <= 1)
return;
if (nele == 2) {
if (base[0] > base[l])
swap (base, base+l) ;
return;

}

/* Partition returns index of pivot */
size t m = partition(base, nele);
if (m > 1)
gsort serial (base, m);
if (nele-1 > m+l)
gsort serial (base+m+l, nele-m-1);

}

m Sort nele elements starting at base
= Recursively sort L or R if has more than one element

34

Carnegie Mellon

Parallel Quicksort

m Parallel quicksort of set of values X
= |f N < Nthresh, do sequential quicksort
= Else

= Choose “pivot” p from X
= Rearrange X into
— L: Values<p
— R:Values = p
= Recursively spawn separate threads
— Sort Lto get L’
— Sort Rto get R’
= ReturnLl':p: R’

35

Carnegie Mellon

Parallel Quicksort Visualized

—
| ><

36

Carnegie Mellon

Parallel Quicksort Data Structures

/* Structure that defines sorting task */
typedef struct {

data_t *base;

size t nele;

pthread t tid;
} sort task t;

volatile int ntasks = O;
volatile int ctasks = O;
sort_task_t **tasks = NULL;

sem t tmutex;

m Data associated with each sorting task
" base: Array start

" pnele: Number of elements
" tid: Thread ID
m Generate list of tasks

= Must protect by mutex
37

Carnegie Mellon

Parallel Quicksort Initialization

static void init task(size_t nele) {
ctasks = 64;
tasks = (sort _task t **) Calloc(ctasks, sizeof(sort task t *));
ntasks = 0;
Sem init(&tmutex, 0, 1);
nele max serial = nele / serial fraction;

m Task queue dynamically allocated
m Set Nthresh = N/F:

= N Total number of elements

= F Serial fraction
= Fraction of total size at which shift to sequential quicksort

38

Carnegie Mellon

Parallel Quicksort: Accessing Task Queue

static sort task t *new task(data t *base, size t nele) ({
P (&tmutex) ;
if (ntasks == ctasks) {
ctasks *= 2;
tasks = (sort task t *¥)
Realloc(tasks, ctasks * sizeof(sort task t *));

}
int idx = ntasks++;
sort task t *t = (sort task t *) Malloc(sizeof(sort task t));

tasks[idx] = t;

V (&tmutex) ;
t->base = base;
t->nele = nele;

t->tid = (pthread t) O;
return t;

m Dynamically expand by doubling queue length
" Generate task structure dynamically (consumed when reap thread)

m Must protect all accesses to queue & ntasks by mutex

39

Carnegie Mellon

Parallel Quicksort: Top-Level Function

void tgsort(data_t *base, size_ t nele) {

int 1i;

init task(nele) ;

tgsort helper (base, nele);

for (i = 0; i < get ntasks(); i++) {
P (&tmutex) ;
sort _task t *t = tasks[i];
V(&tmutex) ;
Pthread join(t->tid, NULL) ;
free((void *) t);

m Actual sorting done by tqsort_helper

m Must reap all of the spawned threads
= All accesses to task queue & ntasks guarded by mutex

40

Carnegie Mellon

Parallel Quicksort: Recursive function

void tgsort helper(data t *base, size t nele) {
if (nele <= nele max serial) ({
/* Use sequential sort */
gsort serial (base, nele);
return;
}
sort task t *t = new_task(base, nele);
Pthread create(&t->tid, NULL, sort thread, (void *) t);

}

m If below Nthresh, call sequential quicksort
m Otherwise create sorting task

4

Carnegie Mellon

Parallel Quicksort: Sorting Task Function

static void *sort_ thread(void *vargp) ({
sort task t *t = (sort task t *) vargp;
data_t *base = t->base;
size t nele = t->nele;
size t m = partition(base, nele);
if (m > 1)
tgsort helper (base, m);
if (nele-1 > m+l)
tgsort helper (base+m+l, nele-m-1);
return NULL;

m Same idea as sequential quicksort

42

Carnegie Mellon

Parallel Quicksort Performance

22.00

Parallel Quicksort

20.00 \\ Q
18.00 \
16.00 \
14.00 \
12.00

\ —El|apsed seconds
10.00

\ Multicore limit
8.00 \ = Hyperthread limit
6.00 \ /
4.00

\/

2.00

0.00

1 2 4 8 16 32 64 128 256 512 1024 2048 4096 8192 16384 Number of threads

Serial Fraction

m Sort 237 (134,217,728) random values
m Best speedup = 6.84X

43

Carnegie Mellon

Parallel Quicksort Performance

22.00

L~ Parallel Quicksort

18.00 \\
16.00 \
14.00 \
12.00

\ —El|apsed seconds
10.00

\ Multicore limit
8.00 \ = Hyperthread limit
6.00 \ /
4.00

\/

2.00

0.00

1 2 4 8 16 32 64 128 256 512 1024 2048 4096 8192 16384 Number of threads

Serial Fraction

m Good performance over wide range of fraction values
" F too small: Not enough parallelism
" F too large: Thread overhead + run out of thread memory

44

Carnegie Mellon

Amdahl’s Law & Parallel Quicksort

m Sequential bottleneck
" Top-level partition: No speedup
= Second level: = 2X speedup
= kth Jevel: < 251X speedup

m Implications
" Good performance for small-scale parallelism

" Would need to parallelize partitioning step to get large-scale
parallelism

= Parallel Sorting by Regular Sampling

— H. Shi & J. Schaeffer, J. Parallel & Distributed Computing,
1992

45

Carnegie Mellon

Lessons Learned

m Must have strategy

= Partition into K independent parts
= Divide-and-conquer

m Inner loops must be synchronization free
= Synchronization operations very expensive

m Watch out for hardware artifacts
= Sharing and false sharing of global data

m Youcan do it!

= Achieving modest levels of parallelism is not difficult

46

Carnegie Mellon

Extra slides

47

Carnegie Mellon

Out-of-Order Processor Structure

Instruction Control

Instruction
Cache

Registers Op. Queue

[

Functional Units

m Instruction control dynamically converts program into
stream of operations

m Operations mapped onto functional units to execute in
parallel

48

Carnegie Mellon

Hyperthreading
Instruction Control
Instruction
Reg A Op. Queue A l Cache
Reg B Op. Queue B
T PCA | [pc g

A 4 1 A AN 4

Functional Units

m Replicate enough instruction control to process K
instruction streams

m K copies of all registers
m Share functional units ©

Carnegie Mellon

Summary: Creating Parallel Machines

m Multicore

= Separate instruction logic and functional units
= Some shared, some private caches
= Must implement cache coherency

m Hyperthreading

= Also called “simultaneous multithreading”
= Separate program state
® Shared functional units & caches

= No special control needed for coherency

m Combining

= Shark machines: 8 cores, each with 2-way hyperthreading
" Theoretical speedup of 16X

= Never achieved in our benchmarks

50

Memory Consistency

inta=1;

int b = 100;
Threadl: Thread2:
Wa: a=2; Whb: b =200;
Rb: print(b); | | Ra: print(a);

m What are the possible values printed?

= Depends on memory consistency model

Carnegie Mellon

Thread consistency
constraints
Wa—— Rb

Wb——— Ra

= Abstract model of how hardware handles concurrent accesses

m Sequential consistency

= Qverall effect consistent with each individual thread

= QOtherwise, arbitrary interleaving

51

Carnegie Mellon

Sequential Consistency Example

Thread consistency

!nt Z i 1’00 constraints
int '/’\ Wa———Rb
Threadl: Thread2: Wb Ra
Wa: a=2; Whb: b = 200;
Rb: print(b); | | Ra: print(a); Rb Wb Ra 100, 2
Wa < Rb ——Ra 200,2
Wb <
Ra —Rb 2,200
Ra ——— Wa ———Rb 1,200
Wb < Ra ——Rb 2,200
Wa <
Rb —Ra 200, 2

m Impossible outputs
= 100,1and 1, 100
" Would require reaching both Ra and Rb before Wa and Wb

52

Carnegie Mellon

Non-Coherent Cache Scenario

inta=1;
m Write-back caches, without int b = 100;
coordination between them /\
Thread1: Thread2:
Wa: a=2; Whb: b = 200;
Rb: print(b); | | Ra: print(a);

Thread1 Cache Thread2 Cache
a: 2 b:100 ! a:1 b:200 print 1
AN print 100

a:1

53

Carnegie Mellon

Snoopy Caches a1

int b =100;

m Tag each cache block with state /\
Invalid Cannot use value Thread1: Thread2:
Shared Readable copy Wa: a=2; Whb: b = 200;
Exclusive Writeable copy Rb: print(b); | | Ra: print(a);

Thread1 Cache Thread2 Cache
E| a:2
E |b:200
Main Memory
a:1 b:100

54

Carnegie Mellon

Snoopy Caches a1

int b =100;

m Tag each cache block with state /\
Invalid Cannot use value Thread1: Thread2:
Shared Readable copy Wa: a=2; Whb: b = 200;
Exclusive Writeable copy Rb: print(b); | | Ra: print(a);

Thread1 Cache Thread2 Cache
S| a:2 S| a2 print 2
S b:k 200
\ print 200

\Nlﬁ'l'l’mmry/ m When cache sees request for

21 b:100 one of its E-tagged blocks

m Supply value from cache

m SettagtoS

55

