Carnegie Mellon

Web Services

15-213 / 18-213: Introduction to Computer Systems
22" Lecture, Nov. 13, 2012

Instructors:

Dave O’Hallaron, Greg Ganger, and Greg Kesden

Carnegie Mellon

“Consider a future device for
individual use, which is a sort of
mechanized private file and library.
It needs a name, and to coin one at
random, "memex" will do. A memex
is a device in which an individual
stores all his books, records, and
communications, and which is
mechanized so that it may be
consulted with exceeding speed and
flexibility. It is an enlarged intimate
supplement to his memory.”

m 1945:

= Vannevar Bush, “As we may think”, Atlantic Monthly, July, 1945
= Describes the idea of a distributed hypertext system
= A “memex” that mimics the “web of trails” in our minds

Carnegie Mellon

Web History (as described by most)

m 1989:

= Tim Berners-Lee (CERN) writes internal proposal to develop a
distributed hypertext system
= Connects “a web of notes with links”

= Intended to help CERN physicists in large projects share and
manage information

m 1990:

" Tim BL writes a graphical browser for Next machines

Web History (cont)

m 1992

= NCSA server released
= 26 WWW servers worldwide

m 1993
= Marc Andreessen releases first version of NCSA Mosaic browser
" Mosaic version released for (Windows, Mac, Unix)
= Web (port 80) traffic at 1% of NSFNET backbone traffic
= QOver 200 WWW servers worldwide

m 1994

" Andreessen and colleagues leave NCSA to form “Mosaic
Communications Corp” (predecessor to Netscape)

Web Servers

m Clients and servers communicate
using the HyperText Transfer
Protocol (HTTP)

® (Client and server establish TCP
connection

= (Client requests content

= Server responds with requested
content

®" (Client and server close connection
(eventually)

m Current versionis HTTP/1.1
® RFC 2616, June, 1999.

Web
client
(browser)

HTTP request

HTTP response

(content)
HTTP Web content
TCP Streams
IP Datagrams

http://www.w3.0org/Protocols/rfc2616/rfc2616.html

Carnegie Mellon

Web
server

Web Content

m Web servers return content to clients
= content: a sequence of bytes with an associated MIME (Multipurpose
Internet Mail Extensions) type
m Example MIME types
" text/html HTML document
" text/plain Unformatted text
" application/postscript Postcript document
" image/gif Binary image encoded in GIF format
" image/Jjpeg Binary image encoded in JPEG format

Carnegie Mellon

Static and Dynamic Content

m The content returned in HTTP responses can be either
static or dynamic

= Static content: content stored in files and retrieved in response to
an HTTP request

= Examples: HTML files, images, audio clips
= Request identifies which content file

= Dynamic content: content produced on-the-fly in response to an
HTTP request

= Example: content produced by a program executed by the
server on behalf of the client

= Request identifies which file containing executable code

m Bottom line: (most) Web content is associated with a file
that is managed by the server

URLs and how clients and servers use them

m Unigue name for a file: URL (Universal Resource Locator)
m Example URL: http://www.cmu.edu:80/index.html

m Clients use prefix (http://www.cmu.edu: 80) to infer:
= What kind (protocol) of server to contact (HTTP)
= Where the serveris (www.cmu.edu)
"= What port it is listening on (80)
m Servers use suffix (/index.html) to:
= Determine if request is for static or dynamic content.
= No hard and fast rules for this
= Convention: executables reside in cgi-bin directory
" Find file on file system
= |nitial “/” in suffix denotes home directory for requested content.

= Minimal suffix is “/”, which server expands to configured default
filename (usually, index.html)

Example of an HTTP Transaction

unix> telnet www.cmu.edu 80 Client: open connection to server
Trying 128.2.10.162... Telnet prints 3 lines to the terminal
Connected to www.cmu.edu.
Escape character is '*]'.

GET / HTTP/1.1 Client: request line

host: www.cmu.edu Client: required HTTP/1.1 HOST header
Client: empty line terminates headers .

HTTP/1.1 301 Moved Permanently Server: response line

Location: http://www.cmu.edu/index.shtml Client should try again

Connection closed by foreign host. Server: closes connection
unix> Client: closes connection and terminates

Carnegie Mellon

Example of an HTTP Transaction, Take 2

unix> telnet www.cmu.edu 80 Client: open connection to server
Trying 128.2.10.162... Telnet prints 3 lines to the terminal
Connected to www.cmu.edu.

Escape character is '*]'.

GET /index.shtml HTTP/1.1 Client: request line

host: www.cmu.edu Client: required HTTP/1.1 HOST header
Client: empty line terminates headers .

HTTP/1.1 200 OK Server: responds with web page

Date: Fri, 29 Oct 2010 19:41:08 GMT

Server: Apache/1.3.39 (Unix) mod pubcookie/3.3.3
Transfer-Encoding: chunked

Content-Type: text/html

.. Lots of stuff

Connection closed by foreign host. Server: closes connection

unix> Client: closes connection and terminates

10

HTTP Requests

m HTTP request is a request line, followed by zero or more
request headers

m Request line: <method> <uri> <version>

" <method> isoneof GET, POST, OPTIONS, HEAD, PUT,
DELETE, or TRACE

" <uri>istypically URL for proxies, URL suffix for servers
= A URL is a type of URI (Uniform Resource ldentifier)
= See http://www.ietf.org/rfc/rfc2396.txt
" <yversion>is HTTP version of request (HTTP/1.0 or HTTP/1.1)

1"

HTTP Requests (cont)

m HTTP methods:

= GET: Retrieve static or dynamic content
= Arguments for dynamic content are in URI
= Workhorse method (99% of requests)
= POST: Retrieve dynamic content
= Arguments for dynamic content are in the request body
= OPTIONS: Get server or file attributes
= HEAD: Like GET but no data in response body
= PUT: Write a file to the server!
" DELETE: Delete a file on the server!
= TRACE: Echo request in response body
= Useful for debugging

m Request headers: <header name>: <header data>
" Provide additional information to the server

12

HTTP Versions

m Major differences between HTTP/1.1 and HTTP/1.0

= HTTP/1.0 uses a new connection for each transaction

HTTP/1.1 also supports persistent connections
= multiple transactions over the same connection
» Connection: Keep-Alive

HTTP/1.1 requires HOST header

» Host: www.cmu.edu

= Makes it possible to host multiple websites at single Internet host

HTTP/1.1 supports chunked encoding (described later)
= Transfer-Encoding: chunked
HTTP/1.1 adds additional support for caching

13

Carnegie Mellon

HTTP Responses

m HTTP response is a response line followed by zero or more
response headers, possibly followed by data

m Response line:

<version> <status code> <status msg>
= <version>is HTTP version of the response
= <status code> is numeric status
= <status msg> is corresponding English text

= 200 OK Request was handled without error
= 301 Moved Provide alternate URL

= 403 Forbidden Server lacks permission to access file
= 404 Not found Server couldn’t find the file

m Response headers: <header name>: <header data>
" Provide additional information about response
" Content-Type: MIME type of content in response body
" Content-Length: Length of contentin response body

14

Carnegie Mellon

GET Request to Apache Server
From Firefox Browser

URI is just the suffix, not the entire URL

GET /~bqyant/test.html HTTP/1.1

Host: www.cs.cmu.edu

User-Agent: Mozilla/5.0 (Windows; U; Windows NT 6.0; en-US; rv:
1.9.2.11) Gecko/20101012 Firefox/3.6.11

Accept: text/html,application/xhtml+xml,application/
xml;g=0.9,*/*;9=0.8

Accept-Language: en-us,en;g=0.5

Accept-Encoding: gzip,deflate

Accept-Charset: ISO-8859-1,utf-8;9=0.7,*;g=0.7
Keep-Alive: 115

Connection: keep-alive

CRLF (\r\n)

15

GET Response From Apache Server

HTTP/1.1 200 OK

Date: Fri, 29 Oct 2010 19:48:32 GMT
Server: Apache/2.2.14 (Unix) mod ssl/2.2.14 OpenSSL/0.9.7m
mod pubcookie/3.3.2b PHP/5.3.1
Accept-Ranges: bytes

Content-Length: 479

Keep-Alive: timeout=15, max=100
Connection: Keep-Alive

Content-Type: text/html

<html>

<head><title>Some Tests</title></head>

<body>
<hl>Some Tests</hl>
</body>
</html>

16

Carnegie Mellon

Proxies

m A proxyis an intermediary between a client and an origin server
" To the client, the proxy acts like a server
" To the server, the proxy acts like a client

1. Client request 2. Proxy request
7 Origin
Server

4. Proxy response 3. Server response

17

Carnegie Mellon

Why Proxies?

m Can perform useful functions as requests and responses pass by
= Examples: Caching, logging, anonymization, filtering, transcoding

Request foo.html

Request foo.html

Origin
£oo . html Server
Request foo.hty
Slower more
expensive
foo.html global network

Fast inexpensive local network

18

Carnegie Mellon

Two types of web proxy

m Explicit (browser-known) proxies
= Used by configuring browser to send requests to proxy
" Each request specifies entire URL
= allowing proxy to know target server
m Transparent proxies

= Browser/client behaves as though there is no proxy

" Proxy runs on network component in route between client and
server

= intercepting and interposing on web requests

19

Carnegie Mellon

Tiny Web Server

m Tiny Web server described in text
= Tiny is a sequential Web server

= Serves static and dynamic content to real browsers
= text files, HTML files, GIF and JPEG images
= 226 lines of commented C code

= Not as complete or robust as a real web server

20

Tiny Operation

m Accept connection from client
m Read request from client (via connected socket)
m Split into method / uri / version

" |f not GET, then return error

m If URI contains “cgi-bin” then serve dynamic content
= (Would do wrong thing if had file “abcgi-bingo.html”)
= Fork process to execute program

m Otherwise serve static content
= Copy file to output

21

Carnegie Mellon

Tiny Serving Static Content

/* Send response headers to client */ From tiny.c
get filetype(filename, filetype);
sprintf (buf, "HTTP/1.0 200 OK\r\n");
sprintf (buf, "%$sServer: Tiny Web Server\r\n", buf);
sprintf (buf, "%$sContent-length: %d\r\n", buf, filesize);
sprintf (buf, "%$sContent-type: %$s\r\n\r\n",
buf, filetype);
Rio writen(fd, buf, strlen(buf));

/* Send response body to client */

srcfd = Open(filename, O RDONLY, O0);

srcp = Mmap (0, filesize, PROT READ, MAP PRIVATE, srcfd, 0);
Close(srcfd) ;

Rio writen(fd, srcp, filesize);

Munmap (srcp, filesize);

= Serve file specified by filename

= Use file metadata to compose header
= “Read” file via mmap

= Write to output

22

Carnegie Mellon

Serving Dynamic Content

m Client sends request to server GET /cgi-bin/env.pl HTTP/1.1

m If request URI contains the Client » Server
string “/cgi-bin”, then the
server assumes that the
request is for dynamic content

23

Carnegie Mellon

Serving Dynamic Content (cont)

m The server creates a child
Server
process and runs the
program identified by the URI
in that process fork/exec

@

24

Carnegie Mellon

Serving Dynamic Content (cont)

m The child runs and generates Client Server
the dynamic content Content k

Content
m The server captures the
content of the child and @
forwards it without

modification to the client

25

Carnegie Mellon

Issues in Serving Dynamic Content

m How does the client pass program Request
arguments to the server? 7

Client)Content (Server
m How does the server pass these)
arguments to the child?

m How does the server pass other info Content Create
relevant to the request to the child?

m How does the server capture the
content produced by the child?

m These issues are addressed by the
Common Gateway Interface (CGl)
specification.

26

Carnegie Mellon

m Because the children are written according to the CGI
spec, they are often called CG/ programs.

m Because many CGI programs are written in Perl, they are
often called CGI/ scripts.

m However, CGI really defines a simple standard for
transferring information between the client (browser),
the server, and the child process.

27

The add.com Experience

input URL host port CGIprogram args

AN / yd
f € htip://greatwhite.ics.cs.cmu.edu:15283/cgi-b n/gder‘ n1=15213&n]=18243 - Windaf(< Internet Explorer AW : Lﬂl@léj
@)~ 'Q http:,-",:"greatwhite.ics.cs.cmu.edu:15213,."':9i-;)5;1;";dder?n1= 1521381112‘:‘182‘-‘1-3 o v ‘ +2 ‘ X ’ ‘ Go,_:;‘:';‘ L v
Eile Edit VMiew Favorites Tools Help
Gougle EI *J Search -« (8~ s~ | @ Share~ | ® Sy~ Signln~ @;Convert v [B) Select
Wk @ http://greatwhite.ics.cs.cmu.edu:15213/cgi-bin/a... {7’

v B) v ® v |rPRagev Teols v

Welcome to add.com: THE Internet addition portal.

' The answer 1s: 15213 + 18243 -= 33456

4 Thanks for wisiting!

!

Done

\ € Internet | Protected Mode: On
E 3 e,

H100% -

Output page

28

Serving Dynamic Content With GET

m Question: How does the client pass arguments to the server?

m Answer: The arguments are appended to the URI

m Can be encoded directly in a URL typed to a browser or a URL
in an HTML link
" http://add.com/cgi-bin/adder?nl=15213&n2=18243
" adder is the CGl program on the server that will do the addition.
= argument list starts with “?2”

= arguments separated by “&”
" spaces represented by “+” or “%20”

29

Serving Dynamic Content With GET

m URL:
" cgi-bin/adder?nl=15213&n2=18243

m Result displayed on browser:

Welcome to add.com: THE Internet addition portal. The
answer is: 15213 + 18243 -> 33456
Thanks for visiting!

30

Serving Dynamic Content With GET

m Question: How does the server pass these arguments to
the child?

m Answer: In environment variable QUERY_STRING
= Asingle string containing everything after the “?”
" Foradd: QUERY STRING=“nl=15213&n2=18243"

From adder.c

if ((buf = getenv("QUERY STRING")) !'= NULL) ({
if (sscanf (buf, "nl=%d&n2=%d\n", &nl, &n2) == 2)
sprintf (msg, "%d + %d -> %d\n", nl, n2, nl+n2);
else

sprintf (msg, "Can't parse buffer '%s'\n", buf);

3

Additional CGIl Environment Variables

m General
" SERVER SOFTWARE

" SERVER NAME
" GATEWAY INTERFACE (CGl version)

m Request-specific
" SERVER PORT
®" REQUEST METHOD (GET, POST, etc)
" QUERY STRING (contains GET args)
" REMOTE HOST (domain name of client)
" REMOTE ADDR (IP address of client)

" CONTENT TYPE (for POST, type of data in message body, e.g.,
text/html)

" CONTENT LENGTH (length in bytes)

32

Even More CGI Environment Variables

m In addition, the value of each header of type type received
from the client is placed in environment variable HTTP type

an” “ ll) .

= Examples (any “-” is changed to
= HTTP ACCEPT
= HTTP HOST

* HTTP USER AGENT

33

Carnegie Mellon

Serving Dynamic Content With GET

m Question: How does the server capture the content produced by the child?

m Answer: The child generates its output on stdout. Server uses dup2 to
redirect stdout to its connected socket.

= Notice that only the child knows the type and size of the content. Thus the child
(not the server) must generate the corresponding headers.

/* Make the response body */ From adder.c

sprintf (content, "Welcome to add.com: ") ;
sprintf (content, "$sTHE Internet addition portal.\r\n<p>",

content) ;
sprintf (content, "%$sThe answer is: %s\r\n<p>",

content, msqg);
sprintf (content, "%sThanks for visiting!\r\n", content);

/* Generate the HTTP response */
printf ("Content-length: %u\r\n", (unsigned) strlen(content));

printf ("Content-type: text/html\r\n\r\n");
printf ("%s", content)

34

Serving Dynamic Content With GET

linux> telnet greatwhite.ics.cs.cmu.edu 15213
Trying 128.2.220.10...
Connected to greatwhite.ics.cs.cmu.edu (128.2.220.10).

—--Escape character is_'2] ' @ @ o e e e e e e e e e e e e e e e =
GET /cgi-bin/adder?nl=5&n2=27 HTTP/1.1
host: greatwhite.ics.cs.cmu.edu HTTP request sent by client
<CRLF>

HTTP/1.0 200 OK
Server: Tiny Web Server

Content-length: 109
Content-type: text/html

Welcome to add.com: THE Internet addition portal.

<p>The answer is: 5 + 27 -> 32
P HTTP response generated by

<p>Thanks for visiting! the CGI program
Connection closed by foreign host.

35

Tiny Serving Dynamic Content

/* Return first part of HTTP response */ From tiny.c
sprintf (buf, "HTTP/1.0 200 OK\r\n");
Rio writen(fd, buf, strlen(buf));
sprintf (buf, "Server: Tiny Web Server\r\n") ;
Rio writen(fd, buf, strlen(buf));

if (Fork() == 0) { /* child */
/* Real server would set all CGI vars here */
setenv ("QUERY STRING", cgiargs, 1);
Dup2 (fd, STDOUT FILENO); /* Redirect stdout to client */
Execve (filename, emptylist, environ);/* Run CGI prog */

}
Wait (NULL) ; /* Parent waits for and reaps child */

" Fork child to execute CGI program
" Change stdout to be connection to client

= Execute CGI program with execve

36

Carnegie Mellon

Data Transfer Mechanisms

m Standard

= Specify total length with content-length
= Requires that program buffer entire message

m Chunked

= Break into blocks
= Prefix each block with number of bytes (Hex coded)

37

Carnegie Mellon

Chunked Encoding Example

HTTP/1.1 200 OK\n

Date: Sun, 31 Oct 2010 20:47:48 GMT\n
Server: Apache/1.3.41 (Unix)\n
Keep-Alive: timeout=15, max=100\n
Connection: Keep-Alive\n
Transfer-Encoding: chunked\n
Content-Type: text/html\n

\r\n
r sbhaull| First Chunk: 0xd75 = 3445 bytes
<head>

.<link href="http://www.cs.cmu.edu/style/calendar.css" rel="stylesheet"
type="text/css">

</head>

.< <body id="calendar body">

<div id='calendar'><table width='100%' border='0' cellpadding='0"
cellspacing='1l' id='cal'>

</body>
</html>
\r\n

O\m\n Second Chunk: 0 bytes (indicates last chunk)

38

Carnegie Mellon

For More Information

m Study the Tiny Web server described in your text
"= Tiny is a sequential Web server.
= Serves static and dynamic content to real browsers.
= text files, HTML files, GIF and JPEG images.
= 220 lines of commented C code.

= Also comes with an implementation of the CGlI script for the add.com
addition portal.

m See the HTTP/1.1 standard:
" http://www.w3.0rg/Protocols/rfc2616/rfc2616.html

39

Carnegie Mellon

m Each file managed by a server has a unique name called a URL
(Universal Resource Locator)

m URLs for static content:
" http://www.cs.cmu.edu:80/index.html
" http://www.cs.cmu.edu/index.html
" http://www.cs.cmu.edu
= |dentifies a file called index.html, managed by a Web server at
WWW.CS.cmu.edu thatis listening on port 80
m URLs for dynamic content:
" http://www.cs.cmu.edu:8000/cgi-bin/proc?15000&213

= |dentifies an executable file called proc, managed by a Web server at
WWW.CS.cmu.edu thatis listening on port 8000, that should be
called with two argument strings: 15000 and 213

40

Carnegie Mellon

Internet Hosts

Internet Domain Survey Host Count

900,000,000 +

800,000,000 +

700,000,000 +

600,000,000 +

500,000,000 +

400,000,000 +

300,000,000 +

200,000,000 +

100,000,000 +

0 ——t———t—————————t———t———t——t——t—1—1

T W W M~ 00 O 9~ ©o 9 T W W o~ o & o
T T T 2?2 ¥ 2T ¢ 2T @T @ 2?2 2T 2 2 2 2 <
S S £ £ £ £ £ £ £ £ £ £ £ £ £ £
o o o o o o o o o o o o o o o o o
e T T T S S S S S S S S S S S S S

Source: Internet Systems Consortium (www.isc.org)

" How many of the 232 I[P addresses have registered domain names?

4

