Carnegie Mellon

Cache Memories

15-213: Introduction to Computer Systems
11t Lecture, Oct. 2, 2012

Instructors:
Dave O’Hallaron, Greg Ganger, and Greg Kesden

Carnegie Mellon

Today

m Cache memory organization and operation

Carnegie Mellon

General Cache Concept (Reminder)

Cache

Memory

Smaller, faster, more expensive
memory caches a subset of
the blocks

Larger, slower, cheaper memory
viewed as partitioned into “blocks”

4 9 10 3
Data is copied in block-sized
10 transfer units
1 2 3
4 5 6 7
8 9 10 11
12 13 14 15

Many types of caches

Examples
= Hardware: L1 and L2 CPU caches, TLBs, ...

= Software: virtual memory, FS buffers, web browser caches, ...

Many common design issues
= each cached item has a “tag” (an ID) plus contents

®= need a mechanism to efficiently determine whether given item is cached

» combinations of indices and constraints on valid locations

® on a miss, usually need to pick something to replace with the new item

» called a “replacement policy”
= on writes, need to either propagate change or mark item as “dirty”

= write-through vs. write-back

Different solutions for different caches

= Lets talk about CPU caches as a concrete example...

CPU Cache Memories

m CPU Cache memories are small, fast SRAM-based
memories managed automatically in hardware
= Hold frequently accessed blocks of main memory

m CPU looks first for data in caches (e.g., L1, L2, and L3),
then in main memory

m Typical system structure:

Gache)y |
memories :

@ : ' | System bus Memclry bus
[o KT wain
bridge memory

Bus interface

Carnegie Mellon

General Cache Organization (S, E, B)

E = 2¢ lines per set
A

- ~N
r _
o000
o0 00
S=Zssets< co oo
0000000000000 OCOCGCOGOEOGOEOSOEONOGONOEOSONOEOSEOSOOO
o000
\
Cache size:
vl [weg | [ola]2]- B-1 C =S x E x B data bytes
valid bit ~—

B = 2® bytes per cache block (the data)

Carnegie Mellon

CaChe Read * Locate set

* Check if any line in set
has matching tag

E = 2¢ lines per set * Yes + line valid: hit
- A ~ * Locate data starting
r at offset
o000

Address of word:
t bits s bits | b bits

S=2-°'sets< AR w—)\/—/\f-)

tag set block

index offset

0 00000000000 OCOGCEOGEOGOEOEOGOEOGOEOSEOOSOSOOOFO
o000
\.
data begins at this offset
v tag 0112 <" B-1
valid bit N~ ~— —

B = 2° bytes per cache block (the data)

Carnegie Mellon

Example: Direct Mapped Cache (E = 1)

Direct mapped: One line per set
Assume: cache block size 8 bytes

4 . olil21:1als1el7 Address of int:
Y 28 tbits | 0..01 | 100

v tag 01112134]|5]|6]7

find set

S$=2 sets<

v tag 0]112)3|4]|5]|6]7

'} tag 0|l1]2)13]4|5]|16]|7

Carnegie Mellon

Example: Direct Mapped Cache (E = 1)

Direct mapped: One line per set
Assume: cache block size 8 bytes

Address of int:
t bits 0..01 | 100

valid? + match: assume yes = hit

v tag 0|j1]2]|3]|4]|5]|6]|7

block offset

Carnegie Mellon

Example: Direct Mapped Cache (E = 1)

Direct mapped: One line per set
Assume: cache block size 8 bytes

Address of int:
t bits 0..01 | 100

valid? + match: assume yes = hit

v tag 0|l1]2]|3|4]|5]|6]|7

block offset

int (4 Bytes) is here

If tag doesn’t match: old line is evicted and replaced

10

Carnegie Mellon

Direct-Mapped Cache Simulation

t=1 s=2 b=l M=16 bytes (4-bit addresses), B=2 bytes/block,
X XX X S=4 sets, E=1 Blocks/set

Address trace (reads, one byte per read):

0 [0000,], miss
7 [0111,], miss
8 [1000,], miss
0 [0000,] miss

v Tag Block

Set0 | 1 0 M[0-1]
Set1l
Set 2
Set3 | 1 0 M[6-7]

1"

Carnegie Mellon

E-way Set Associative Cache (Here: E = 2)

E = 2: Two lines per set
Assume: cache block size 8 bytes Address of short int:

t bits 0..01 | 100

v| | tag | [of1]2{3]als]6l7]| [[v] [tag] [0]2]2]3]4]5]6]7

v| [tag | [ol1]2]3]a]5]6]7]]| |[v] [tag] [o]2]2]3]a]5]6]7 find set

v| | tag | [of1]2{3]als]6l7]| |[v] [tag] [0]2]2]3]4]5]6]7

v| | tag | lof1]2{3]als]6l7]| |[v] [tag] [0]2]2]3]4]5]6]7

12

Carnegie Mellon

E-way Set Associative Cache (Here: E = 2)

E = 2: Two lines per set
Assume: cache block size 8 bytes Address of short int:

t bits 0..01 | 100

compare both

valid? + | match: yes = hit

v| [tag | |of1]2|3]afs]6l7]| ||v] [tag] [0]2]2]3]4]5]6]7

block offset

13

Carnegie Mellon

E-way Set Associative Cache (Here: E = 2)

E = 2: Two lines per set
Assume: cache block size 8 bytes Address of short int:

t bits 0..01 | 100

compare both

valid? + | match: yes = hit

v| |_tag | |of1]2{3]afs]67]| |[v] [tag] [0]2]2]3]4]5]6]7

block offset

short int (2 Bytes) is here

No match:
* Onelinein set is selected for eviction and replacement
* Replacement policies: random, least recently used (LRU), ...

14

Carnegie Mellon

2-Way Set Associative Cache Simulation

t=2 s=1 b=1
XX X X M=16 byte addresses, B=2 bytes/block,

S=2 sets, E=2 blocks/set

Address trace (reads, one byte per read):

0 [0000,], miss
1 [0001,], hit
7 [0111,], miss
8 [1000,], miss
0 [0000,] hit

v Tag Block

seto |1 [00 | Mm[0-1]
1 |10 [M[89]

[HEY

Set 1 01 M[6-7]

15

What about writes?

m Multiple copies of data exist:
= L1, L2, Main Memory, Disk

m What to do on a write-hit?
= Write-through (write immediately to memory)
= Write-back (defer write to memory until replacement of line)
= Need a dirty bit (line different from memory or not)

m What to do on a write-miss?
= Write-allocate (load into cache, update line in cache)
= Good if more writes to the location follow
= No-write-allocate (writes straight to memory, does not load into cache)

m Typical
= Write-through + No-write-allocate
= Write-back + Write-allocate

16

Carnegie Mellon

Intel Core i7 Cache Hierarchy

Access: 30-40 cycles

L3 unified cache

(shared by all cores) Block size: 64 bytes for

all caches.

Processor package

. Core 0 Core 3 L1 i-cache and d-cache:
: : 32 KB, 8-way,
Regs Regs Access: 4 cycles

L1 L1 L1 L1 L2 unified cache:

. | |d-cache| |i-cache d-cache| |i-cache| | 256 KB, 8-way,
" Access: 11 cycles

' | | L2 unified cache L2 unified cache | | | (3 unified cache:

8 MB, 16-way,

Main memory

17

Carnegie Mellon

Cache Performance Metrics

m Miss Rate

" Fraction of memory references not found in cache (misses / accesses)
=1 - hit rate
= Typical numbers (in percentages):
= 3-10% for L1

= can be quite small (e.g., < 1%) for L2, depending on size, etc.

m Hit Time
= Time to deliver a line in the cache to the processor
= includes time to determine whether the line is in the cache
= Typical numbers:
= 1-2 clock cycle for L1
= 5-20 clock cycles for L2

m Miss Penalty
= Additional time required because of a miss
= typically 50-200 cycles for main memory (Trend: increasing!)

18

Carnegie Mellon

Lets think about those numbers

m Huge difference between a hit and a miss

= Could be 100k, if just L1 and main memory

m Would you believe 99% hits is twice as good as 97%?

= Consider:
cache hit time of 1 cycle
miss penalty of 100 cycles

= Average access time:
97% hits: 1 cycle + 0.03 * 100 cycles = 4 cycles
99% hits: 1 cycle + 0.01 * 100 cycles = 2 cycles

m This is why “miss rate” is used instead of “hit rate”

19

Carnegie Mellon

Writing Cache Friendly Code

m Make the common case go fast

® Focus on the inner loops of the core functions

m Minimize the misses in the inner loops
= Repeated references to variables are good (temporal locality)
= Stride-1 reference patterns are good (spatial locality)

Key idea: Our qualitative notion of locality is quantified
through our understanding of cache memories

20

Carnegie Mellon

Back to Observations

m Programmer can optimize for cache performance
= How data structures are organized
" How data are accessed (examples follow)
= Nested loop structure
= Blocking is a general technique

m All systems favor “cache friendly code”
= Getting absolute optimum performance is very platform specific
= Cache ssizes, line sizes, associativities, etc.
= Can get most of the advantage with generic code
= Keep working set reasonably small (temporal locality)
= Use small strides (spatial locality)

21

Carnegie Mellon

Today

= Rearranging loops to improve spatial locality

22

Carnegie Mellon

Miss Rate Analysis for Matrix Multiply

m Assume:
" Line size = 32B (big enough for four 64-bit words)
= Matrix dimension (N) is very large
= Approximate 1/N as 0.0
= Cache is not even big enough to hold multiple rows

m Analysis Method:

® Look at access pattern of inner loop

: :\i x\k

23

Carnegie Mellon

Matrix Multiplication Example

Variable sum

= Description: /* ij]f */ _ _ held in register
= Multiply N x N matrices for (i=0; i<n; i++) {
= O(N3) total operations for (j=0; j<n; j++) {

sum = 0.0; <
= N reads per source

element

for (k=0; k<n; k++)
sum += a[i][k] * b[k]l[j];
c[i][j] = sum;

" N values summed per
destination

= but may be able to
hold in register

24

Carnegie Mellon

Layout of C Arrays in Memory (review)

m Carrays allocated in row-major order
= each row in contiguous memory locations
m Stepping through columns in one row:
" for (1 = 0; 1 < N; 1++)
sum += a[0][1i];
® accesses successive elements
= if block size (B) > 4 bytes, exploit spatial locality
= miss rate =4 bytes /B
m Stepping through rows in one column:
" for (i = 0; i < n; i++)
sum += a[1][0];
= accesses distant elements
" no spatial locality!
= miss rate =1 (i.e. 100%)

25

Carnegie Mellon

Matrix Multiplication (ijk)

/* ijk */
for (i=0; i<n; i++) {

for (j=0; j<n; j++) { i
sum = 0.0; g(i'*) (i
A B

for (k=0; k<n; k++)
sum += a[i] [k] * b[k]l[3j];

c[i] [§] = sum; ‘ ‘ ‘
}

Row-wise Column- Fixed
wise

Inner loop:

Misses per inner loop iteration:
A B C

0.25 1.0 0.0

26

Carnegie Mellon

Matrix Multiplication (jik)

/* jik */
for (j=0; j<n; Jj++) {

for (i=0; i<n; i++) { * i

sum = 0.0; L;;;J _ E]ii: (ﬁﬂ
for (k=0; k<n; k++) (i,*)

sum += a[i] [k] * b[k][3]; A B

c[i][3] = sum ‘ ‘ ‘
)

Row-wise Column- Fixed
wise

Inner loop:

Misses per inner loop iteration:

A B C

0.25 1.0 0.0

27

Carnegie Mellon

Matrix Multiplication (kij)

kLI Inner loop:
for (k=0; k<n; k++) {
for (i=0; i<n; i++) ({ (i.k) :(k'*)g
r = a[i] [k]; . (i,%)
for (j=0; j<n; j++) A B C
c[i] [J] += r * b[k][]]~ ‘ ‘ ‘
Fixed Row-wise Row-wise

Misses per inner loop iteration:

A B C

0.0 0.25 0.25

28

Carnegie Mellon

Matrix Multiplication (ikj)

/* ik */ Inner loop:
for (i=0; i<n; i++) {
for (k=0; k<n; k++) { (i,k) :(k'*)g
r = a[i] [k]’ = (i,)
for (3J=0; j<n; j++) A B C
c[i] [J] += r * b[k][]]~ ‘ ‘ ‘
Fixed Row-wise Row-wise

Misses per inner loop iteration:

A B C

0.0 0.25 0.25

29

Matrix Multiplication (jki)

/* ki */ Inner loop:
for (j=0; j<n; j++) { (*,k)
for (k=0; k<n; k++) { ” (k.j)
r = b[k][]]’ =
for (i=0; i<n; i++) A B
c[il[j] += a[il[k] * r; ‘ ‘
Column- Fixed
wise

Misses per inner loop iteration:

A B C

1.0 0.0 1.0

Carnegie Mellon

),

N

C

|

Column-
wise

30

Carnegie Mellon

Matrix Multiplication (kji

/* kji */
for (k=0; k<n; k++) {

for (3=0; j<n; j++) { * k) * i
r = b[k][j]; (I:,J')

for (i=0; i<n; i++)

Inner loop:

c[il [j]1 += al[il[k] * r; A‘\ T c‘
Column- Fixed Column-
wise wise

Misses per inner loop iteration:
A B C

1.0 0.0 1.0

3

for (i=0; i<n; i++) {
for (j=0; j<n; j++) {
sum = 0.0;
for (k=0; k<n; k++)
sum += a[i][k] * b[k]I[j];
c[i] [J] = sum;
}
}

for (k=0; k<n; k++) {
for (i=0; i<n; i++) {
r = a[i] [k];
for (j=0; j<n; j++)
c[i]l[3] += r * b[k][]J];
}
}

for (j=0; j<n; j++) {

for (k=0; k<n; k++) {
r = b[k][J];
for (i=0; i<n; i++)
c[i]l[3] += al[il[k] * r;

Summary of Matrix Multiplication

ijk (& jik):
e 2 loads, O stores
* misses/iter = 1.25

kij (& ikj):
¢ 2 |loads, 1 store
e misses/iter = 0.5

jki (& kji):
e 2 |loads, 1 store
* misses/iter = 2.0

32

Carnegie Mellon

Core i7 Matrix Multiply Performance

60

jki / kji
W

40
> jki
ki
>ijk
30 / _@_lek
et g e —+Kkij
ijk / jik it
AT iKj
20 ’

) J /
o— M Kij / ikj
B A—Ar—A—— A

50 100 150 200 250 300 350 400 450 500 550 600 650 700 750
Array size (n) 33

Cycles per inner loop iteration

Carnegie Mellon

Today

= Using blocking to improve temporal locality

34

Carnegie Mellon

Example: Matrix Multiplication

¢ = (double *) calloc(sizeof (double), n*n);

/* Multiply n x n matrices a and b */
void mmm (double *a, double *b, double *c, int n) {
int i, j, k;
for (i = 0; 1 < n; i++)
for (J = 0; j < n; j++)
for (k = 0; k < n; k++)
c[i*n+j] += a[i*n + k]*b[k*n + j];

[T

I
*

35

Carnegie Mellon

Cache Miss Analysis

m Assume:

= Matrix elements are doubles
= Cache block = 8 doubles
" Cache size C << n (much smaller than n)

m First iteration: r ~
" n/8+n=9n/8 misses

1
*

= Afterwards in cache:
(schematic) . C —

Il
*

8 wide
36

Carnegie Mellon

Cache Miss Analysis

m Assume:

= Matrix elements are doubles
= Cache block = 8 doubles
" Cache size C << n (much smaller than n)

n
m Second iteration: —N
= Again: :
n/8 + n =9n/8 misses _ *
8 wide

m Total misses:
" 9n/8 * n2=(9/8) * n3

37

Carnegie Mellon

Blocked Matrix Multiplication

¢ = (double *) calloc(sizeof (double), n*n);

/* Multiply n x n matrices a and b */
void mmm(double *a, double *b, double *c, int n) {
int i, j, k;
for (i = 0; 1 < n; i+=B)
for (j = 0; j < n; j+=B)
for (k = 0; k < n; k+=B)
/* B x B mini matrix multiplications */
for (i1l = i; il < i+B; i++)
for (j1 = j; jl < j+B; j++)
for (k1 = k; k1l < k+B; k++)
c[il*n+jl1l] += a[il*n + kl1l]*b[kl*n + jl];

jl
Cc a b Cc
= K +
] i1 [

Block size Bx B

38

Carnegie Mellon

Cache Miss Analysis

m Assume:
= Cache block = 8 doubles

® Cache size C << n (much smaller than n)
" Three blocks M fit into cache: 3B2< C

]] . n/B blocks
m First (block) iteration: —A
= B2/8 misses for each block ™ BEEEE B
= 2n/B * B2/8 = nB/4 _ —
(omitting matrix c) - * ||
Block size B x B
= Afterwards in cache] T] | o
(schematic)

I
*

39

Carnegie Mellon

Cache Miss Analysis

m Assume:
= Cache block = 8 doubles

® Cache size C << n (much smaller than n)
" Three blocks M fit into cache: 3B2< C

] . n/B blocks
m Second (block) iteration: —A
" Same as first iteration] BEEREE
= 2n/B * B2/8 =nB/4
- 3
m Total misses: Block size B x B

" nB/4 * (n/B)? =n3/(4B)

40

Carnegie Mellon

Summary

m No blocking: (9/8) * n3
m Blocking: 1/(4B) * n3

m Suggest largest possible block size B, but limit 3B2 < C!

m Reason for dramatic difference:
= Matrix multiplication has inherent temporal locality:
= |nput data: 3n?, computation 2n3
= Every array elements used O(n) times!
= But program has to be written properly

4

Carnegie Mellon

Today

m Performance impact of caches
" The memory mountain

42

Carnegie Mellon

The Memory Mountain

m Read throughput (read bandwidth)

= Number of bytes read from memory per second (MB/s)

m Memory mountain: Measured read throughput as a
function of spatial and temporal locality.

= Compact way to characterize memory system performance.

43

Carnegie Mellon

Memory Mountain Test Function

/* The test function */

void test(int elems, int stride) {
int i, result = 0;
volatile int sink;

for (1 = 0; i < elems; i += stride)
result += data[i];
sink = result; /* So compiler doesn't optimize away the loop */

}

/* Run test(elems, stride) and return read throughput (MB/s) */
double run(int size, int stride, double Mhz)
{

double cycles;

int elems = size / sizeof (int) ;

test (elems, stride); /* warm up the cache */
cycles = fcyc2(test, elems, stride, 0); /* call test(elems,stride) */
return (size / stride) / (cycles / Mhz); /* convert cycles to MB/s */

44

Carnegie Mellon

Intel Core i7

H 32 KB L1 i-cache
The Memory Mountain Ko LL gene
256 KB unified L2 cache

8M unified L3 cache

All caches on-chip

Read throughput (MB/s)

45

Carnegie Mellon

Intel Core i7

H 32 KB L1 i-cache
The Memory Mountain Ko LL gene
256 KB unified L2 cache
8M unified L3 cache

All caches on-chip

Read throughput (MB/s)

spatial
locality

46

Carnegie Mellon

Intel Core i7
H 32 KB L1 i-cache
The Memory Mountaln 32 KB L1 d-cache
- 256 KB unified L2 cache
_ 8M unified L3 cache

Q) 7000
a L1
?E_: 6000 - All caches on-chip
=
=
< 5000
o
é 4000
® 3000 L2 Ridges of
o Temporal
2000 locality
Slopes of L3
spatial .
locality 0 |
V) (ep) 0 Mem ¢ ﬁ
D H I~ ¥ ©
n O o -
P T ¢ = N
. o~ T = T %
Stride (x8 bytes) ® o @ Working set size (bytes)

64M

47

A Higher Level Example

int

{

sum array rows (double a[l6][16])

int 1, j;
double sum = 0;

for (1 = 0; i < 16; i++)
for (j = 0; j < 16; j++)
sum += a[i] [j];
return sum;

int

sum array cols(double a[l6][16])

int 1, j;
double sum = 0;

for (j = 0; i < 16; i++)
for (1 = 0; j < 16; j++)
sum += a[i] [j];
return sum;

Carnegie Mellon

Ignore the variables sum, i, j

assume: cold (empty) cache,

a[0][0] goes here
v
“ y
'

32 B =4 doubles

blackboard

48

A Higher Level Example

int

{

sum array rows (double a[l6][16])

int 1, j;
double sum = 0;

for (1 = 0; i < 16; i++)
for (j = 0; j < 16; j++)
sum += a[i] [j];
return sum;

int

sum array rows (double a[l6][16])

int 1, j;
double sum = 0;

for (j = 0; i < 16; i++)
for (1 = 0; j < 16; j++)
sum += a[i] [j];
return sum;

Carnegie Mellon

Ignore the variables sum, i, j

assume: cold (empty) cache,

a[0][0] goes here
v
“ J
n'g

32 B =4 doubles

blackboard

49

