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Byte-Oriented Memory Organization

m Programs refer to data by address
= Conceptually, envision it as a very large array of bytes
= Inreality, it’s not, but can think of it that way
= An address is like an index into that array
= and, a pointer variable stores an address

m Note: system provides private address spaces to each “process”
= Think of a process as a program being executed
= So, a program can clobber its own data, but not that of others

From 2" lecture 4
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Traditional Bus Structure Connecting
CPU and Memory

m A bus is a collection of parallel wires that carry address,
data, and control signals.

m Buses are typically shared by multiple devices.

CPU chip

Register file

System bus Memory bus

T
bridge memory
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Today

m DRAM as building block for main memory
[
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Simple Memory Addressing Modes

= Normal (R) Mem[Reg[R]]
= Register R specifies memory address

= Aha! Pointer dereferencing in C

movl (%ecx),%eax

m Displacement  D(R) Mem[Reg[R]+D]
= Register R specifies start of memory region

= Constant displacement D specifies offset

movl 8 (%ebp) ,%edx

From 5t lecture 4
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Memory Read Transaction (1)

m CPU places address A on the memory bus.

Register file Load operation: movl A, %eax

%eax ALU

Main memory

1/O bridge A
[ pomee K= K=




Carnegie Mellon

Memory Read Transaction (2)
= Main memory reads A from the memory bus, retrieves
word x, and places it on the bus.

Register file Load operation: movl A, $%$eax

%eax

Main memo
/0 bridge x 0
’_g_‘ A N

:
N— N A
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Memory Write Transaction (1)

m CPU places address A on bus. Main memory reads it and
waits for the corresponding data word to arrive.

Register file Store operation: movl %eax, A
%eax AL
ﬁ Main memory
110 bridge A 0
AN A AN

N—] N A
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Memory Write Transaction (3)

m  Main memory reads data word y from the bus and stores
it at address A.

register file

ALU
iI main memory
0

1/0 bridge
e e I e

Store operation: movl %eax, A

%eax
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Memory Read Transaction (3)

m CPU read word x from the bus and copies it into register
%eax.

Register file

ALU
i I Main memory
0

1/0 bridge
— <:>m<‘:> —1a

Load operation: movl A, %eax

Yoeax
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Memory Write Transaction (2)

m CPU places data word y on the bus.

Register file Store operation: movl %eax, A

%eax

i I Main memol
1/O brid 0
ridge
Bus interface \’—‘/I—‘\’—‘/ A
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Dynamic Random-Access Memory (DRAM)

m Key features
= DRAM is traditionally packaged as a chip
= Basic storage unit is normally a cell (one bit per cell)
= Multiple DRAM chips form main memory in most computers
m Technical characteristics
= Organized in two dimensions (rows and columns)
= To access (within a DRAM chip): select row then select column
= Consequence: 2" access to a row faster than different column/row
= Each cell stores bit with a capacitor; one transistor is used for access
®= Value must be refreshed every 10-100 ms
= Done within the hardware
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Conventional DRAM Organization

= dxw DRAM:

= dw total bits organized as d supercells of size w bits

16 x 8 DRAM chip
cols
0
2bits 0
ddr
= 1
— rovs
Memory .
controller 2 — su?;qt;e
(toffrom CPU) a
8 bits 3
I
Internal row buffer
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Reading DRAM Supercell (2,1)
Step 2(a): Column access strobe (CAS) selects column 1.
Step 2(b): Supercell (2,1) copied from buffer to data lines, and eventually
back to the CPU.
16 x 8 DRAM chip
Cols
CAs =1 1 2
H 0
addr
To CPU 1
1 Rows
Memory
controller 2
supercell 3
@1 ;
data
su;(n;;jell Internal row buffer .
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Aside: Nonvolatile Memories

= DRAM and SRAM (caches, on Tuesday) are volatile memories
= Lose information if powered off
m Most common nonvolatile storage is the hard disk
= Rotating platters (like DVDs)... plentiful capacity, but very slow
m Nonvolatile memories retain value even if powered off
Read-only memory (ROM): programmed during production
Programmable ROM (PROM): can be programmed once
Eraseable PROM (EPROM): can be bulk erased (UV, X-Ray)
Electrically eraseable PROM (EEPROM): electronic erase capability
Flash memory: EEPROMs with partial (sector) erase capability
= Wears out after about 100,000 erasings
m Uses for Nonvolatile Memories
Firmware programs stored in a ROM (BIOS, controllers for disks, network
cards, graphics accelerators, security subsystems,...)
Solid state disks (replace rotating disks in thumb drives, smart phones,
mp3 players, tablets, laptops,...)
Disk caches
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Reading DRAM Supercell (2,1)

Step 1(a): Row access strobe (RAS) selects row 2.
Step 1(b): Row 2 copied from DRAM array to row buffer.

16 x 8 DRAM chip
Cols
RAS = 2 1 2

H 0
addr

1

Memory Rows

controller 2

8 3
data

Internal row buffer
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Memory Modules

addr (row = i, col = j)
O : supercell (i,j)

DRAM 0
- 64 MB
sl T memory module
— o i
DRAM7, (s consisting of
ol @ eight 8Mx8 DRAMs
5]

bits bits bits  bits  bits bits  bits bits
56-63 48-55 4047 3239 24-31 1623 815 07

63 5655 4847 4039 3231 2423 1615 87

s e o i i

64-bit doubleword at main memory address A

! 64-bit doubleword
16
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Issue: memory access is slow

= DRAM access is much slower than CPU cycle time
= A DRAM chip has access times of 30-50ns

= and, transferring from main memory into register can take 3X or more
longer than that

= With sub-nanosecond cycles times, 100s of cycles per memory access
= and, the gap grows over time
m Consequence: memory access efficiency crucial to performance
= approximately 1/3 of instructions are loads or stores
® both hardware and programmer have to work at it
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The CPU-Memory Gap
The gap widens between DRAM, disk, and CPU speeds.

100,000,000.0 \
10,000,000.0 Disk

1,000,000.0
SsD
100,000.0 =
10,000.0 ——Disk seek time

—A—Flash SSD access time
~B-DRAM access time
~8-SRAM access time

-0~ CPU cycle time

O Effective CPU cycle time

@ 10000 K_
1000 \g\-\'\l&.
10.0

1980 1985 1990 1995 2000 2003 2005 2010
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Today

Locality of reference
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Locality Example

sum =

for (i ;i< n; it+)
sum += a[i];

return sum;

m Data references

= Reference array elements in succession
(stride-1 reference pattern). Spatial locality
= Reference variable sum each iteration. Temporal locality
m Instruction references
= Reference instructions in sequence.

= Cycle through loop repeatedly.

Spatial locality
Temporal locality

Carnegie Mellon

Locality to the Rescue!

The key to bridging this CPU-Memory gap is a fundamental
property of computer programs known as locality

Locality

m Principle of Locality: Programs tend to use data and
instructions with addresses near or equal to those they
have used recently

L

m Temporal locality:

= Recently referenced items are likely
to be referenced again in the near future

m Spatial locality: CITT1T1—]
= |tems with nearby addresses tend

to be referenced close together in time
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Qualitative Estimates of Locality

m Claim: Being able to look at code and get a qualitative
sense of its locality is a key skill for a professional
programmer.

= Question: Does this function have good locality with
respect to array a?

int sum array rows(int a[M][N])
{

int i, j, sum = 0;

for (i = 0; i < M; i++)
for (j = 0; j < N; j++)
sum += a[i] []];
return sum;
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Locality Example Today
m Question: Does this function have good locality with -
respect to array a? ]
m Caching in the memory hierarchy
int sum_array cols(int a[M][N]) | |
{
int i, j, sum = 0;
for (j = 0; j < N; j++)
for (i = 0; i < M; i++)
sum += a[i][j];
return sum;
}
» %
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Memory Hierarchies An Example Memory Hierarchy

CPU registers hold words retrieved
from L1 cache

= Some fundamental and enduring properties of hardware
and software:

. N L1 cache
Fast storage technologies cost more per byte, have less capacity,

L1 cache holds cache lines retrieved

A Smaller, (SRAM)
and require more power (heat!) faster, from L2 cache
= The gap between CPU and main memory speed is widening °°“Ee: L2 cache
. o " per byte he holds cache li
= Well-written programs tend to exhibit good locality (T ,L:t:ia:v; f:m:. l:::inerr::rensorv
13
Larger, PG ™ holds disk block
: " ain memory holds disk blocks
m These fundamental properties complement each other slower, (DRAM) retrieved from local disks
beautifully cheaper
per byte L4: Local secondary storage Local disks hold files

(local disks) retrieved from disks on
remote network servers

m They suggest an approach for organizing memory and

storage systems known as a memory hierarchy ™ Remote secondary storage
y (tapes, distributed file systems, Web servers)

Caches General Cache Concepts

m Cache: A smaller, faster storage device that acts as a staging
area for a subset of the data in a larger, slower device.

Smaller, faster, more expensive
Cache | 4 ” 9 ” 10 ” 3 memory caches a subset of
the blocks

m Fundamental idea of a memory hierarchy:
" For each k, the faster, smaller device at level k serves as a cache for the
larger, slower device at level k+1.
. . Data is copied in block-sized
= Why do memory hierarchies work? o coPied i bloclesize
= Because of locality, programs tend to access the data at level k more
often than they access the data at level k+1.

Larger, slower, cheaper memory
= Thus, the storage at level k+1 can be slower, and thus larger and Memory | 0 || 1 || 2 || 3 | viewed as partitioned into “blocks”
cheaper per bit. [a [ s [ e [ 7 1
m Big Idea: The memory hierarchy creates a large pool of [8 J[ 9 [ 20 [ 11 ]
storage that costs as much as the cheap storage near the [[12 [ a3 J[ 24 [ 15 ]
bottom, but that serves data to programs at the rate of the R

fast storage near the top.
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General Cache Concepts: Hit

Request: 14 Data in block b is needed

Cache |[3 1[5 I l[ 3 ] Block b is in cache:

Hit!
Memory [[ o J[ 1 ][ 2 ][ 3 ]
[ a1 s [ s [ 71
[ [ o J[ 10 ][ 1]
[ |

12 |[ 13 ][ 1a ][ 15
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General Cache Concepts: Miss

Request: 12 Data in block b is needed

] Block b is not in cache:

determines which block
gets evicted (victim)

Cache |I 8 (12 J[ 1a [ 3 Wiss!
III Block b is fetched from
Request: 12
memory
Block b is stored in cache
Memory l 0 ” 1 ” 2 ” 3 l * Placement policy:
| 4 ” 5 ” 6 ” 7 | determines where b goes
| 8 ” 9 ” 10 ” 11 | * Replacement policy:
[ |

12 |[ 13 ][ 1a ][ 15
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Examples of Caching in the Hierarchy

Cache Type What is Cached? | Where is it Cached? | Latency (cycles) | Managed By

Registers 4-8 bytes words CPU core 0 | Compiler

TLB Address translations | On-Chip TLB 0 | Hardware

L1 cache 64-bytes block On-Chip L1 1| Hardware

L2 cache 64-bytes block On/Off-Chip L2 10 | Hardware

Virtual Memory 4-KB page Main memory 100 | Hardware + 0S

Buffer cache Parts of files Main memory 100 | OS

Disk cache Disk sectors Disk controller 100,000 | Disk firmware

Network buffer Parts of files Local disk 10,000,000 | AFS/NFS client

cache

Browser cache Web pages Local disk 10,000,000 | Web browser

Web cache Web pages Remote server disks 1,000,000,000 | Web proxy
server
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How locality induces cache hits

m Temporal locality: O

= 2nd through Nt accesses to same

location will be hits

m Spatial locality:
= Cache blocks contains multiple words, <—7
s0 2" to N word accesses can be hits EEE:'
on cache block loaded for 15t word

= Row buffer in DRAM is another example

General Caching Concepts:
Types of Cache Misses

m Cold (compulsory) miss
= The first access to a block has to be a miss
®= Most cold misses occur at the beginning, because the cache is empty
m Conflict miss
® Most caches limit blocks at level k+1 to a small subset (sometimes a
singleton) of the block positions at level k
= E.g., Block i at level k+1 must be placed in block (i mod 4) at level k

= Conflict misses occur when the level k cache is large enough, but multiple
data objects all map to the same level k block

= E.g., Referencing blocks 0, 8, 0, 8, 0, 8, ... would miss every time
m Capacity miss

= Occurs when the set of active cache blocks (working set) is larger than
the cache
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Memory hierarchy summary

m The speed gap between CPU, memory and mass storage
continues to widen

m Well-written programs exhibit a property called locality

m Memory hierarchies based on caching close the gap by
exploiting locality
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Today What'’s Inside A Disk Drive?
Spindle
[ ]
- Arm Platters
[ ]
m Storage technologies and trends Actuator
Electronics
(including a
processor
scsi and memory!)
connector
Image courtesy of Seagate Technology
@ %
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Disk Geometry Disk Geometry (Muliple-Platter View)
m Disks consist of platters, each with two surfaces. m Aligned tracks form a cylinder.
m Each surface consists of concentric rings called tracks. Cylinder k
m Each track consists of sectors separated by gaps. Suraced
urface
Surface 1 Platter 0
Tracks Surface 2
X Surface 3 Platter 1
s Track k Gaps
rface 4
% —~g Surface Platter 2
/7 N\ Surface 5
/ \ Spindle
\T T/
Sectors
39 40
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Disk Capacity Computing Disk Capacity
m Capacity: maximum number of bits that can be stored. Capacity = (# bytes/sector) x (avg. # sectors/track) x
= Vendors express capacity in units of gigabytes (GB), where (# tracks/surface) x (# surfaces/platter) x
1 GB = 10° Bytes (Lawsuit pending! Claims deceptive advertising). (# platters/disk)
m Capacity is determined by these technology factors: Example:
= Recording density (bits/in): number of bits that can be squeezed ® 512 bytes/sector
into a 1 inch segment of a track. ® 300 sectors/track (on average)
= Track density (tracks/in): number of tracks that can be squeezed ® 20,000 tracks/surface
into a 1 inch radial segment. "2 S”rfaces/éla“e"
= Areal density (bits/in2): product of recording and track density. * 5 platters/disk
] Modet;"n disks partition tracks into disjoint subsets called Capacity = 512 x 300 x 20000 X 2 x 5
recording zones = 30,720,000,000
= Each track in a zone has the same number of sectors, determined =30.72GB
by the circumference of innermost track. ’
= Each zone has a different number of sectors/track
“ P
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Disk Operation (Single-Platter View)

The disk surface
spins at a fixed
rotational rate

The read/write head

is attached to the end
of the arm and flies over
the disk surface on

a thin cushion of air.

By moving radially, the arm can
position the read/write head over
any track.

Disk Structure - top view of single platter

Surface organized into tracks

FESEE)
2

NEEY

Tracks divided into sectors
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Disk Operation (Multi-Platter View)

Read/write heads
move in unison
from cylinder to cylinder

Disk Access

Rotation is counter-clockwise

Disk Access

Head in position above a track

Disk Access — Read

About to read blue sector




Disk Access — Read

After BLUE read

After reading blue sector

Disk Access — Seek

After BLUE read

Seek for RED

Seek to red’s track

Disk Access — Read

After BLUE read

Red request scheduled next

Disk Access — Read

After BLUE read

Seek for RED Rotational latency

Complete read of red

After RED read

Disk Access — Rotational Latency

After BLUE read

Seek for RED Rotational latency

Wait for red sector to rotate around

Disk Access — Service Time Components

After BLUE read Seek for RED Rotational latency  After RED read
Data transfer Seek Rotational Data transfer

latency
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Disk Access Time

m Average time to access some target sector approximated by :
® Taccess = Tavg seek + Tavg rotation + Tavg transfer

Seek time (Tavg seek)
= Time to position heads over cylinder containing target sector.

= Typical Tavg seek is 3—9 ms
m Rotational latency (Tavg rotation)
= Time waiting for first bit of target sector to pass under r/w head.
= Tavg rotation = 1/2 x 1/RPMs x 60 sec/1 min
= Typical Tavg rotation = 7200 RPMs
m Transfer time (Tavg transfer)
= Time to read the bits in the target sector.
= Tavg transfer = 1/RPM x 1/(avg # sectors/track) x 60 secs/1 min.

Logical Disk Blocks

m Modern disks present a simpler abstract view of the
complex sector geometry:
= The set of available sectors is modeled as a sequence of b-sized
logical blocks (0, 1, 2, ...)
m Mapping between logical blocks and actual (physical)
sectors
= Maintained by hardware/firmware device called disk controller.
= Converts requests for logical blocks into (surface,track,sector)
triples.
m Allows controller to set aside spare cylinders for each
zone.

= Accounts for the difference in “formatted capacity” and “maximum
capacity”.
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Reading a Disk Sector (1)

CPU chip

CPU initiates a disk read by writing a
command, logical block number, and
destination memory address to a port
ﬁ (address) associated with disk controller.

Register file

ALU

Main
memory

>

P o

L L

Graphics Disk
adapter controller

H

usB
controller

Joard

mouse Key!
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Disk Access Time Example

= Given:
= Rotational rate = 7,200 RPM
= Average seek time =9 ms.
= Avg # sectors/track = 400.
m Derived:
= Tavg rotation = 1/2 x (60 secs/7200 RPM) x 1000 ms/sec = 4 ms.
= Tavg transfer = 60/7200 RPM x 1/400 secs/track x 1000 ms/sec = 0.02 ms
® Taccess =9 ms+4ms+0.02ms
= Important points:
= Access time dominated by seek time and rotational latency.
= First bit in a sector is the most expensive, the rest are free.
= SRAM access time is about 4 ns/doubleword, DRAM about 60 ns
= Disk is about 40,000 times slower than SRAM,
= 2,500 times slower then DRAM.

Carnegie Mellon

1/0 Bus

CPU chip

Register file
1

1L

LU
System bus Memory bus
./ l
—
memory
1/0 bus

=)
(—

Expansion slots for
other devices such

usB Graphics Disk as network adapters.
controller adapter controller
Mouse Keyboard Monitor —
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Reading a Disk Sector (2)

CPU chip

Register file Disk controller reads the sector and
) performs a direct memory access
AL (DMA) transfer into main memory.

1T

> A Main
W memory

ﬁ F 10 bus >
Graphics Disk
adapter contioller

Mouse Keyboard Monitor

s

2

10
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Reading a Disk Sector (3)

CPU chip

When the DMA transfer completes,
= the disk controller notifies the CPU
ALU with an interrupt (i.e., asserts a
special “interrupt” pin on the CPU)

1T
1/0 bus >

UsB Graphics Disk
controller adapter controller

Mouse Keyboard Monitor

Register file

J\J*

Hig
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SSD Performance Characteristics

Sequential read tput 250 MB/s
Random read tput 140 MB/s
Rand read access 30 us

Sequential write tput 170 MB/s
Random write tput 14 MB/s
Random write access 300 us

m Why are random writes so slow?
= Erasing a block is slow (around 1 ms)
= Write to a page triggers a copy of all useful pages in the block
= Find an used block (new block) and erase it
= Write the page into the new block
= Copy other pages from old block to the new block
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Storage Trends
SRAM
Metric 1980 1985 1990 1995 2000 2005 2010  2010:1980
$/IMB 19,200 2,900 320 256 100 75 60 320
access (ns) 300 150 35 15 3 2 1.5 200
DRAM
Metric 1980 1985 1990 1995 2000 2005 2010  2010:1980
$IMB 8,000 880 100 30 1 0.1 0.06 130,000
access (ns) 375 200 100 70 60 50 40 9
typical size (MB) 0.064 0.256 4 16 64 2,000 8,000 125000
Disk
Metric 1980 1985 1990 1995 2000 2005 2010  2010:1980
$/IMB 500 100 8 0.30 0.01 0.005  0.0003 1,600,000
access (ms) 87 75 28 10 8
typical size (MB) 1 10 160 1,000 20,000 160,000 1,500,0001,500,000
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Solid State Disks (SSDs)

1/0 bus
Requests to read and
ite I l disk blocks
Solid State Disk (SSD) 1 EW” ogealdistblocts

Flash memory
Block 0 Block B-1

“Pageo |Page1 ‘---‘PagePJ” “Pageo |Page1 ‘---‘PagePJ”

Pages: 512KB to 4KB, Blocks: 32 to 128 pages

Data read/written in units of pages.

Page can be written only after its block has been erased
A block wears out after 100,000 repeated writes.

SSD Tradeoffs vs Rotating Disks

m Advantages
® No moving parts > faster, less power, more rugged

m Disadvantages
® Have the potential to wear out
= Mitigated by “wear leveling logic” in flash translation layer

= E.g. Intel X25 guarantees 1 petabyte (10 bytes) of random
writes before they wear out

® |n 2010, about 100 times more expensive per byte

m Applications
= MP3 players, smart phones, laptops
= Beginning to appear in desktops and servers
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CPU Clock Rates

Inflection point in computer history
when designers hit the “Power Wall”

1980 1990 1995 2000 : 2003; 2005 2010  2010:1980
CPU 8080 386 Pentium P-lll P-4 Core2 Corei7
Clock
rate (MHz) 1 20 150 600 3300 2000 2500 2500
Cycle
time (ns) 1000 50 6 1.6 0.3 0.50 0.4 2500
Cores 1 1 1 1 1 2 4 4
Effective
cycle 1000 50 6 1.6 0.3 0.25 0.1 10,000
time (ns)
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Random-Access Memory (RAM)

m Key features
= RAM is traditionally packaged as a chip.
= Basic storage unit is normally a cell (one bit per cell).
= Multiple RAM chips form a memory.

m Static RAM (SRAM)

Each cell stores a bit with a four or six-transistor circuit.

Retains value indefinitely, as long as it is kept powered.

Relatively insensitive to electrical noise (EMI), radiation, etc.

Faster and more expensive than DRAM.
m Dynamic RAM (DRAM)
= Each cell stores bit with a capacitor. One transistor is used for access
= Value must be refreshed every 10-100 ms.
= More sensitive to disturbances (EMI, radiation,...) than SRAM.
= Slower and cheaper than SRAM.

Enhanced DRAMs

m Basic DRAM cell has not changed since its invention in 1966.
= Commercialized by Intel in 1970.
m DRAM cores with better interface logic and faster 1/0 :
= Synchronous DRAM (SDRAM)
= Uses a conventional clock signal instead of asynchronous control
= Allows reuse of the row addresses (e.g., RAS, CAS, CAS, CAS)

® Double data-rate synchronous DRAM (DDR SDRAM)
= Double edge clocking sends two bits per cycle per pin
= Different types distinguished by size of small prefetch buffer:
— DDR (2 bits), DDR2 (4 bits), DDR4 (8 bits)
= By 2010, standard for most server and desktop systems
= Intel Core i7 supports only DDR3 SDRAM
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SRAM vs DRAM Summary

Trans. Access Needs Needs
perbit time refresh? EDC? Cost  Applications

SRAM  4or6 11X No Maybe 100x  Cache memories

DRAM 1 10X Yes Yes 1X Main memories,

frame buffers

Locality Example
m Question: Can you permute the loops so that the function

scans the 3-d array a with a stride-1 reference pattern
(and thus has good spatial locality)?

int sum array 3d(int a[M][N] [N])
{
int i, j, k, sum = 0;
for (i = 0; i < M; i++)
for (j = 0; j < N; j++)
for (k = 0; k < N; k++)
sum += a[k][i][3];
return sum;
}
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