Carnegie Mellon

The Memory Hierarchy

15-213 / 18-213: Introduction to Computer Systems
10t Lecture, Sep. 27, 2012

Instructors:

Dave O’Hallaron, Greg Ganger, and Greg Kesden

Carnegie Mellon

Byte-Oriented Memory Organization

m Programs refer to data by address
= Conceptually, envision it as a very large array of bytes
= Inreality, it’s not, but can think of it that way
= An address is like an index into that array
= and, a pointer variable stores an address

m Note: system provides private address spaces to each “process”
= Think of a process as a program being executed
= So, a program can clobber its own data, but not that of others

From 2" lecture 4

Carnegie Mellon

Traditional Bus Structure Connecting
CPU and Memory

m A bus is a collection of parallel wires that carry address,
data, and control signals.

m Buses are typically shared by multiple devices.

CPU chip

Register file

System bus Memory bus

T
bridge memory

Carnegie Mellon

Today

m DRAM as building block for main memory
[

Carnegie Mellon

Simple Memory Addressing Modes

= Normal (R) Mem[Reg[R]]
= Register R specifies memory address

= Aha! Pointer dereferencing in C

movl (%ecx),%eax

m Displacement D(R) Mem[Reg[R]+D]
= Register R specifies start of memory region

= Constant displacement D specifies offset

movl 8 (%ebp) ,%edx

From 5t lecture 4

Carnegie Mellon

Memory Read Transaction (1)

m CPU places address A on the memory bus.

Register file Load operation: movl A, %eax

%eax ALU

Main memory

1/O bridge A
[pomee K= K=

Carnegie Mellon

Memory Read Transaction (2)
= Main memory reads A from the memory bus, retrieves
word x, and places it on the bus.

Register file Load operation: movl A, $%$eax

%eax

Main memo
/0 bridge x 0
’_g_‘ A N

:
N— N A

Carnegie Mellon

Memory Write Transaction (1)

m CPU places address A on bus. Main memory reads it and
waits for the corresponding data word to arrive.

Register file Store operation: movl %eax, A
%eax AL
ﬁ Main memory
110 bridge A 0
AN A AN

N—] N A

Carnegie Mellon

Memory Write Transaction (3)

m Main memory reads data word y from the bus and stores
it at address A.

register file

ALU
iI main memory
0

1/0 bridge
e e I e

Store operation: movl %eax, A

%eax

Carnegie Mellon

Memory Read Transaction (3)

m CPU read word x from the bus and copies it into register
%eax.

Register file

ALU
i I Main memory
0

1/0 bridge
— <:>m<‘:> —1a

Load operation: movl A, %eax

Yoeax

Carnegie Mellon

Memory Write Transaction (2)

m CPU places data word y on the bus.

Register file Store operation: movl %eax, A

%eax

i I Main memol
1/O brid 0
ridge
Bus interface \’—‘/I—‘\’—‘/ A

Carnegie Mellon

Dynamic Random-Access Memory (DRAM)

m Key features
= DRAM is traditionally packaged as a chip
= Basic storage unit is normally a cell (one bit per cell)
= Multiple DRAM chips form main memory in most computers
m Technical characteristics
= Organized in two dimensions (rows and columns)
= To access (within a DRAM chip): select row then select column
= Consequence: 2" access to a row faster than different column/row
= Each cell stores bit with a capacitor; one transistor is used for access
®= Value must be refreshed every 10-100 ms
= Done within the hardware

Carnegie Mellon

Conventional DRAM Organization

= dxw DRAM:

= dw total bits organized as d supercells of size w bits

16 x 8 DRAM chip
cols
0
2bits 0
ddr
= 1
— rovs
Memory .
controller 2 — su?;qt;e
(toffrom CPU) a
8 bits 3
I
Internal row buffer

Carnegie Mellon

Reading DRAM Supercell (2,1)
Step 2(a): Column access strobe (CAS) selects column 1.
Step 2(b): Supercell (2,1) copied from buffer to data lines, and eventually
back to the CPU.
16 x 8 DRAM chip
Cols
CAs =1 1 2
H 0
addr
To CPU 1
1 Rows
Memory
controller 2
supercell 3
@1 ;
data
su;(n;;jell Internal row buffer .

Carnegie Mellon

Aside: Nonvolatile Memories

= DRAM and SRAM (caches, on Tuesday) are volatile memories
= Lose information if powered off
m Most common nonvolatile storage is the hard disk
= Rotating platters (like DVDs)... plentiful capacity, but very slow
m Nonvolatile memories retain value even if powered off
Read-only memory (ROM): programmed during production
Programmable ROM (PROM): can be programmed once
Eraseable PROM (EPROM): can be bulk erased (UV, X-Ray)
Electrically eraseable PROM (EEPROM): electronic erase capability
Flash memory: EEPROMs with partial (sector) erase capability
= Wears out after about 100,000 erasings
m Uses for Nonvolatile Memories
Firmware programs stored in a ROM (BIOS, controllers for disks, network
cards, graphics accelerators, security subsystems,...)
Solid state disks (replace rotating disks in thumb drives, smart phones,
mp3 players, tablets, laptops,...)
Disk caches

Carnegie Mellon

Reading DRAM Supercell (2,1)

Step 1(a): Row access strobe (RAS) selects row 2.
Step 1(b): Row 2 copied from DRAM array to row buffer.

16 x 8 DRAM chip
Cols
RAS = 2 1 2

H 0
addr

1

Memory Rows

controller 2

8 3
data

Internal row buffer

Carnegie Mellon

Memory Modules

addr (row = i, col = j)
O : supercell (i,j)

DRAM 0
- 64 MB
sl T memory module
— o i
DRAM7, (s consisting of
ol @ eight 8Mx8 DRAMs
5]

bits bits bits bits bits bits bits bits
56-63 48-55 4047 3239 24-31 1623 815 07

63 5655 4847 4039 3231 2423 1615 87

s e o i i

64-bit doubleword at main memory address A

! 64-bit doubleword
16

Carnegie Mellon

Issue: memory access is slow

= DRAM access is much slower than CPU cycle time
= A DRAM chip has access times of 30-50ns

= and, transferring from main memory into register can take 3X or more
longer than that

= With sub-nanosecond cycles times, 100s of cycles per memory access
= and, the gap grows over time
m Consequence: memory access efficiency crucial to performance
= approximately 1/3 of instructions are loads or stores
® both hardware and programmer have to work at it

Carnegie Mellon

The CPU-Memory Gap
The gap widens between DRAM, disk, and CPU speeds.

100,000,000.0 \
10,000,000.0 Disk

1,000,000.0
SsD
100,000.0 =
10,000.0 ——Disk seek time

—A—Flash SSD access time
~B-DRAM access time
~8-SRAM access time

-0~ CPU cycle time

O Effective CPU cycle time

@ 10000 K_
1000 \g\-\'\l&.
10.0

1980 1985 1990 1995 2000 2003 2005 2010

Carnegie Mellon

Today

Locality of reference

Carnegie Mellon

Locality Example

sum =

for (i ;i< n; it+)
sum += a[i];

return sum;

m Data references

= Reference array elements in succession
(stride-1 reference pattern). Spatial locality
= Reference variable sum each iteration. Temporal locality
m Instruction references
= Reference instructions in sequence.

= Cycle through loop repeatedly.

Spatial locality
Temporal locality

Carnegie Mellon

Locality to the Rescue!

The key to bridging this CPU-Memory gap is a fundamental
property of computer programs known as locality

Locality

m Principle of Locality: Programs tend to use data and
instructions with addresses near or equal to those they
have used recently

L

m Temporal locality:

= Recently referenced items are likely
to be referenced again in the near future

m Spatial locality: CITT1T1—]
= |tems with nearby addresses tend

to be referenced close together in time

Carnegie Mellon

Qualitative Estimates of Locality

m Claim: Being able to look at code and get a qualitative
sense of its locality is a key skill for a professional
programmer.

= Question: Does this function have good locality with
respect to array a?

int sum array rows(int a[M][N])
{

int i, j, sum = 0;

for (i = 0; i < M; i++)
for (j = 0; j < N; j++)
sum += a[i] []];
return sum;

Carnegie Mellon Carnegie Mellon

Locality Example Today
m Question: Does this function have good locality with -
respect to array a?]
m Caching in the memory hierarchy
int sum_array cols(int a[M][N]) | |
{
int i, j, sum = 0;
for (j = 0; j < N; j++)
for (i = 0; i < M; i++)
sum += a[i][j];
return sum;
}
» %
Carnegic Mellon

Memory Hierarchies An Example Memory Hierarchy

CPU registers hold words retrieved
from L1 cache

= Some fundamental and enduring properties of hardware
and software:

. N L1 cache
Fast storage technologies cost more per byte, have less capacity,

L1 cache holds cache lines retrieved

A Smaller, (SRAM)
and require more power (heat!) faster, from L2 cache
= The gap between CPU and main memory speed is widening °°“Ee: L2 cache
. o " per byte he holds cache li
= Well-written programs tend to exhibit good locality (T ,L:t:ia:v; f:m:. l:::inerr::rensorv
13
Larger, PG ™ holds disk block
: " ain memory holds disk blocks
m These fundamental properties complement each other slower, (DRAM) retrieved from local disks
beautifully cheaper
per byte L4: Local secondary storage Local disks hold files

(local disks) retrieved from disks on
remote network servers

m They suggest an approach for organizing memory and

storage systems known as a memory hierarchy ™ Remote secondary storage
y (tapes, distributed file systems, Web servers)

Caches General Cache Concepts

m Cache: A smaller, faster storage device that acts as a staging
area for a subset of the data in a larger, slower device.

Smaller, faster, more expensive
Cache | 4 ” 9 ” 10 ” 3 memory caches a subset of
the blocks

m Fundamental idea of a memory hierarchy:
" For each k, the faster, smaller device at level k serves as a cache for the
larger, slower device at level k+1.
. . Data is copied in block-sized
= Why do memory hierarchies work? o coPied i bloclesize
= Because of locality, programs tend to access the data at level k more
often than they access the data at level k+1.

Larger, slower, cheaper memory
= Thus, the storage at level k+1 can be slower, and thus larger and Memory | 0 || 1 || 2 || 3 | viewed as partitioned into “blocks”
cheaper per bit. [a [s [e [7 1
m Big Idea: The memory hierarchy creates a large pool of [8 J[9 [20 [11]
storage that costs as much as the cheap storage near the [[12 [a3 J[24 [15]
bottom, but that serves data to programs at the rate of the R

fast storage near the top.

Carnegie Mellon

General Cache Concepts: Hit

Request: 14 Data in block b is needed

Cache |[3 1[5 I l[3] Block b is in cache:

Hit!
Memory [[o J[1][2][3]
[a1 s [s [71
[[o J[10][1]
[|

12 |[13][1a][15

Carnegie Mellon

General Cache Concepts: Miss

Request: 12 Data in block b is needed

] Block b is not in cache:

determines which block
gets evicted (victim)

Cache |I 8 (12 J[1a [3 Wiss!
III Block b is fetched from
Request: 12
memory
Block b is stored in cache
Memory l 0 ” 1 ” 2 ” 3 l * Placement policy:
| 4 ” 5 ” 6 ” 7 | determines where b goes
| 8 ” 9 ” 10 ” 11 | * Replacement policy:
[|

12 |[13][1a][15

Carnegie Mellon

Examples of Caching in the Hierarchy

Cache Type What is Cached? | Where is it Cached? | Latency (cycles) | Managed By

Registers 4-8 bytes words CPU core 0 | Compiler

TLB Address translations | On-Chip TLB 0 | Hardware

L1 cache 64-bytes block On-Chip L1 1| Hardware

L2 cache 64-bytes block On/Off-Chip L2 10 | Hardware

Virtual Memory 4-KB page Main memory 100 | Hardware + 0S

Buffer cache Parts of files Main memory 100 | OS

Disk cache Disk sectors Disk controller 100,000 | Disk firmware

Network buffer Parts of files Local disk 10,000,000 | AFS/NFS client

cache

Browser cache Web pages Local disk 10,000,000 | Web browser

Web cache Web pages Remote server disks 1,000,000,000 | Web proxy
server

Carnegie Mellon

How locality induces cache hits

m Temporal locality: O

= 2nd through Nt accesses to same

location will be hits

m Spatial locality:
= Cache blocks contains multiple words, <—7
s0 2" to N word accesses can be hits EEE:'
on cache block loaded for 15t word

= Row buffer in DRAM is another example

General Caching Concepts:
Types of Cache Misses

m Cold (compulsory) miss
= The first access to a block has to be a miss
®= Most cold misses occur at the beginning, because the cache is empty
m Conflict miss
® Most caches limit blocks at level k+1 to a small subset (sometimes a
singleton) of the block positions at level k
= E.g., Block i at level k+1 must be placed in block (i mod 4) at level k

= Conflict misses occur when the level k cache is large enough, but multiple
data objects all map to the same level k block

= E.g., Referencing blocks 0, 8, 0, 8, 0, 8, ... would miss every time
m Capacity miss

= Occurs when the set of active cache blocks (working set) is larger than
the cache

Carnegie Mellon

Memory hierarchy summary

m The speed gap between CPU, memory and mass storage
continues to widen

m Well-written programs exhibit a property called locality

m Memory hierarchies based on caching close the gap by
exploiting locality

Carnegie Mellon

Carnegie Mellon
’ . . .
Today What'’s Inside A Disk Drive?
Spindle
[]
- Arm Platters
[]
m Storage technologies and trends Actuator
Electronics
(including a
processor
scsi and memory!)
connector
Image courtesy of Seagate Technology
@ %
Carnegie Mellon
Disk Geometry Disk Geometry (Muliple-Platter View)
m Disks consist of platters, each with two surfaces. m Aligned tracks form a cylinder.
m Each surface consists of concentric rings called tracks. Cylinder k
m Each track consists of sectors separated by gaps. Suraced
urface
Surface 1 Platter 0
Tracks Surface 2
X Surface 3 Platter 1
s Track k Gaps
rface 4
% —~g Surface Platter 2
/7 N\ Surface 5
/ \ Spindle
\T T/
Sectors
39 40
Carnegic Mellon
Disk Capacity Computing Disk Capacity
m Capacity: maximum number of bits that can be stored. Capacity = (# bytes/sector) x (avg. # sectors/track) x
= Vendors express capacity in units of gigabytes (GB), where (# tracks/surface) x (# surfaces/platter) x
1 GB = 10° Bytes (Lawsuit pending! Claims deceptive advertising). (# platters/disk)
m Capacity is determined by these technology factors: Example:
= Recording density (bits/in): number of bits that can be squeezed ® 512 bytes/sector
into a 1 inch segment of a track. ® 300 sectors/track (on average)
= Track density (tracks/in): number of tracks that can be squeezed ® 20,000 tracks/surface
into a 1 inch radial segment. "2 S”rfaces/éla“e"
= Areal density (bits/in2): product of recording and track density. * 5 platters/disk
] Modet;"n disks partition tracks into disjoint subsets called Capacity = 512 x 300 x 20000 X 2 x 5
recording zones = 30,720,000,000
= Each track in a zone has the same number of sectors, determined =30.72GB
by the circumference of innermost track. ’
= Each zone has a different number of sectors/track
“ P

Carnegie Mellon

Disk Operation (Single-Platter View)

The disk surface
spins at a fixed
rotational rate

The read/write head

is attached to the end
of the arm and flies over
the disk surface on

a thin cushion of air.

By moving radially, the arm can
position the read/write head over
any track.

Disk Structure - top view of single platter

Surface organized into tracks

FESEE)
2

NEEY

Tracks divided into sectors

Carnegie Mellon

Disk Operation (Multi-Platter View)

Read/write heads
move in unison
from cylinder to cylinder

Disk Access

Rotation is counter-clockwise

Disk Access

Head in position above a track

Disk Access — Read

About to read blue sector

Disk Access — Read

After BLUE read

After reading blue sector

Disk Access — Seek

After BLUE read

Seek for RED

Seek to red’s track

Disk Access — Read

After BLUE read

Red request scheduled next

Disk Access — Read

After BLUE read

Seek for RED Rotational latency

Complete read of red

After RED read

Disk Access — Rotational Latency

After BLUE read

Seek for RED Rotational latency

Wait for red sector to rotate around

Disk Access — Service Time Components

After BLUE read Seek for RED Rotational latency After RED read
Data transfer Seek Rotational Data transfer

latency

Carnegie Mellon

Disk Access Time

m Average time to access some target sector approximated by :
® Taccess = Tavg seek + Tavg rotation + Tavg transfer

Seek time (Tavg seek)
= Time to position heads over cylinder containing target sector.

= Typical Tavg seek is 3—9 ms
m Rotational latency (Tavg rotation)
= Time waiting for first bit of target sector to pass under r/w head.
= Tavg rotation = 1/2 x 1/RPMs x 60 sec/1 min
= Typical Tavg rotation = 7200 RPMs
m Transfer time (Tavg transfer)
= Time to read the bits in the target sector.
= Tavg transfer = 1/RPM x 1/(avg # sectors/track) x 60 secs/1 min.

Logical Disk Blocks

m Modern disks present a simpler abstract view of the
complex sector geometry:
= The set of available sectors is modeled as a sequence of b-sized
logical blocks (0, 1, 2, ...)
m Mapping between logical blocks and actual (physical)
sectors
= Maintained by hardware/firmware device called disk controller.
= Converts requests for logical blocks into (surface,track,sector)
triples.
m Allows controller to set aside spare cylinders for each
zone.

= Accounts for the difference in “formatted capacity” and “maximum
capacity”.

Carnegie Mellon

Reading a Disk Sector (1)

CPU chip

CPU initiates a disk read by writing a
command, logical block number, and
destination memory address to a port
ﬁ (address) associated with disk controller.

Register file

ALU

Main
memory

>

P o

L L

Graphics Disk
adapter controller

H

usB
controller

Joard

mouse Key!

Carnegie Mellon

Disk Access Time Example

= Given:
= Rotational rate = 7,200 RPM
= Average seek time =9 ms.
= Avg # sectors/track = 400.
m Derived:
= Tavg rotation = 1/2 x (60 secs/7200 RPM) x 1000 ms/sec = 4 ms.
= Tavg transfer = 60/7200 RPM x 1/400 secs/track x 1000 ms/sec = 0.02 ms
® Taccess =9 ms+4ms+0.02ms
= Important points:
= Access time dominated by seek time and rotational latency.
= First bit in a sector is the most expensive, the rest are free.
= SRAM access time is about 4 ns/doubleword, DRAM about 60 ns
= Disk is about 40,000 times slower than SRAM,
= 2,500 times slower then DRAM.

Carnegie Mellon

1/0 Bus

CPU chip

Register file
1

1L

LU
System bus Memory bus
./ l
—
memory
1/0 bus

=)
(—

Expansion slots for
other devices such

usB Graphics Disk as network adapters.
controller adapter controller
Mouse Keyboard Monitor —

Carnegie Mellon

Reading a Disk Sector (2)

CPU chip

Register file Disk controller reads the sector and
) performs a direct memory access
AL (DMA) transfer into main memory.

1T

> A Main
W memory

ﬁ F 10 bus >
Graphics Disk
adapter contioller

Mouse Keyboard Monitor

s

2

10

Carnegie Mellon

Reading a Disk Sector (3)

CPU chip

When the DMA transfer completes,
= the disk controller notifies the CPU
ALU with an interrupt (i.e., asserts a
special “interrupt” pin on the CPU)

1T
1/0 bus >

UsB Graphics Disk
controller adapter controller

Mouse Keyboard Monitor

Register file

J\J*

Hig

Carnegie Mellon

SSD Performance Characteristics

Sequential read tput 250 MB/s
Random read tput 140 MB/s
Rand read access 30 us

Sequential write tput 170 MB/s
Random write tput 14 MB/s
Random write access 300 us

m Why are random writes so slow?
= Erasing a block is slow (around 1 ms)
= Write to a page triggers a copy of all useful pages in the block
= Find an used block (new block) and erase it
= Write the page into the new block
= Copy other pages from old block to the new block

Carnegie Mellon

Storage Trends
SRAM
Metric 1980 1985 1990 1995 2000 2005 2010 2010:1980
$/IMB 19,200 2,900 320 256 100 75 60 320
access (ns) 300 150 35 15 3 2 1.5 200
DRAM
Metric 1980 1985 1990 1995 2000 2005 2010 2010:1980
$IMB 8,000 880 100 30 1 0.1 0.06 130,000
access (ns) 375 200 100 70 60 50 40 9
typical size (MB) 0.064 0.256 4 16 64 2,000 8,000 125000
Disk
Metric 1980 1985 1990 1995 2000 2005 2010 2010:1980
$/IMB 500 100 8 0.30 0.01 0.005 0.0003 1,600,000
access (ms) 87 75 28 10 8
typical size (MB) 1 10 160 1,000 20,000 160,000 1,500,0001,500,000

Carnegie Mellon

Solid State Disks (SSDs)

1/0 bus
Requests to read and
ite I l disk blocks
Solid State Disk (SSD) 1 EW” ogealdistblocts

Flash memory
Block 0 Block B-1

“Pageo |Page1 ‘---‘PagePJ” “Pageo |Page1 ‘---‘PagePJ”

Pages: 512KB to 4KB, Blocks: 32 to 128 pages

Data read/written in units of pages.

Page can be written only after its block has been erased
A block wears out after 100,000 repeated writes.

SSD Tradeoffs vs Rotating Disks

m Advantages
® No moving parts > faster, less power, more rugged

m Disadvantages
® Have the potential to wear out
= Mitigated by “wear leveling logic” in flash translation layer

= E.g. Intel X25 guarantees 1 petabyte (10 bytes) of random
writes before they wear out

® |n 2010, about 100 times more expensive per byte

m Applications
= MP3 players, smart phones, laptops
= Beginning to appear in desktops and servers

Carnegie Mellon

CPU Clock Rates

Inflection point in computer history
when designers hit the “Power Wall”

1980 1990 1995 2000 : 2003; 2005 2010 2010:1980
CPU 8080 386 Pentium P-lll P-4 Core2 Corei7
Clock
rate (MHz) 1 20 150 600 3300 2000 2500 2500
Cycle
time (ns) 1000 50 6 1.6 0.3 0.50 0.4 2500
Cores 1 1 1 1 1 2 4 4
Effective
cycle 1000 50 6 1.6 0.3 0.25 0.1 10,000
time (ns)

11

Carnegie Mellon

Random-Access Memory (RAM)

m Key features
= RAM is traditionally packaged as a chip.
= Basic storage unit is normally a cell (one bit per cell).
= Multiple RAM chips form a memory.

m Static RAM (SRAM)

Each cell stores a bit with a four or six-transistor circuit.

Retains value indefinitely, as long as it is kept powered.

Relatively insensitive to electrical noise (EMI), radiation, etc.

Faster and more expensive than DRAM.
m Dynamic RAM (DRAM)
= Each cell stores bit with a capacitor. One transistor is used for access
= Value must be refreshed every 10-100 ms.
= More sensitive to disturbances (EMI, radiation,...) than SRAM.
= Slower and cheaper than SRAM.

Enhanced DRAMs

m Basic DRAM cell has not changed since its invention in 1966.
= Commercialized by Intel in 1970.
m DRAM cores with better interface logic and faster 1/0 :
= Synchronous DRAM (SDRAM)
= Uses a conventional clock signal instead of asynchronous control
= Allows reuse of the row addresses (e.g., RAS, CAS, CAS, CAS)

® Double data-rate synchronous DRAM (DDR SDRAM)
= Double edge clocking sends two bits per cycle per pin
= Different types distinguished by size of small prefetch buffer:
— DDR (2 bits), DDR2 (4 bits), DDR4 (8 bits)
= By 2010, standard for most server and desktop systems
= Intel Core i7 supports only DDR3 SDRAM

Carnegie Mellon

SRAM vs DRAM Summary

Trans. Access Needs Needs
perbit time refresh? EDC? Cost Applications

SRAM 4or6 11X No Maybe 100x Cache memories

DRAM 1 10X Yes Yes 1X Main memories,

frame buffers

Locality Example
m Question: Can you permute the loops so that the function

scans the 3-d array a with a stride-1 reference pattern
(and thus has good spatial locality)?

int sum array 3d(int a[M][N] [N])
{
int i, j, k, sum = 0;
for (i = 0; i < M; i++)
for (j = 0; j < N; j++)
for (k = 0; k < N; k++)
sum += a[k][i][3];
return sum;
}

12

