Carnegie Mellon

Machine-Level Programming |: Basics

15-213/18-213: Introduction to Computer Systems
5t Lecture, Sep. 11, 2012

Instructors:
Dave O’Hallaron, Greg Ganger, and Greg Kesden

Carnegie Mellon

Today: Machine Programming |: Basics

m History of Intel processors and architectures

m C, assembly, machine code
m Assembly Basics: Registers, operands, move

m Intro to x86-64

Carnegie Mellon

Intel x86 Processors

m Totally dominate laptop/desktop/server market

m Evolutionary design

® Backwards compatible up until 8086, introduced in 1978
= Added more features as time goes on

m Complex instruction set computer (CISC)
= Many different instructions with many different formats
= But, only small subset encountered with Linux programs

" Hard to match performance of Reduced Instruction Set Computers
(RISC)

= But, Intel has done just that!
= In terms of speed. Less so for low power.

Carnegie Mellon

Intel x86 Evolution: Milestones

Name Date Transistors MHz

m 8086 1978 29K 5-10
" First 16-bit Intel processor. Basis for IBM PC & DOS
= 1MB address space

m 386 1985 275K 16-33

= First 32 bit Intel processor , referred to as IA32
= Added “flat addressing”, capable of running Unix

m Pentium 4F 2004 125M 2800-3800
= First 64-bit Intel processor, referred to as x86-64

m Core 2 2006 291M 1060-3500
" First multi-core Intel processor

m Corei7 2008 731M 1700-3900

= Four cores (our shark machines)

Carnegie Mellon

Intel x86 Processors, cont.

m Machine Evolution e ,
Integrated:‘Memory Controller:-:3:Ch DDR3:

= 386 1985 0.3M

" Pentium 1993 3.1M _ _

" Pentium/MMX 1997 4.5M Core 0 Core 1 Core2 - Core3
" PentiumPro 1995 6.5M

" Pentium Il 1999 8.2M

" Pentium 4 2001 p) Vi Q

= Core 2 Duo 2006 291M Ls Shared L3 Cache

= Corei” 2008 731 M
m Added Features

" |nstructions to support multimedia operations

" |nstructions to enable more efficient conditional operations
® Transition from 32 bits to 64 bits
" More cores

Carnegie Mellon

x86 Clones: Advanced Micro Devices (AMD)

m Historically
= AMD has followed just behind Intel
= A little bit slower, a lot cheaper

m Then

= Recruited top circuit designers from Digital Equipment Corp. and
other downward trending companies

= Built Opteron: tough competitor to Pentium 4
= Developed x86-64, their own extension to 64 bits

Carnegie Mellon

Intel’s 64-Bit
m Intel Attempted Radical Shift from IA32 to I1A64

= Totally different architecture (Itanium)

= Executes IA32 code only as legacy
= Performance disappointing

m AMD Stepped in with Evolutionary Solution
= x86-64 (now called “AMD64”)

m Intel Felt Obligated to Focus on I1A64
" Hard to admit mistake or that AMD is better

m 2004: Intel Announces EM64T extension to I1A32

= Extended Memory 64-bit Technology
= Almost identical to x86-64!

m All but low-end x86 processors support x86-64
= But, lots of code still runs in 32-bit mode

Carnegie Mellon

Our Coverage

m IA32
" The traditional x86
" shark> gcc —m32 hello.c

m x86-64
" The emerging standard
" shark> gcc hello.c
" shark> gcc —m64 hello.c

m Presentation
= Book presents IA32 in Sections 3.1—3.12
" Covers x86-64 in 3.13
= We will cover both simultaneously
= Some labs will be based on x86-64, others on 1A32

Carnegie Mellon

Today: Machine Programming |: Basics

History of Intel processors and architectures

|
m C, assembly, machine code

m Assembly Basics: Registers, operands, move
|

Intro to x86-64

Definitions

m Architecture: (also ISA: instruction set architecture) The

parts of a processor design that one needs to understand
to write assembly code.

= Examples: instruction set specification, registers.

m Microarchitecture: Implementation of the architecture.
= Examples: cache sizes and core frequency.

m Example ISAs (Intel): x86, IA

10

Assembly Programmer’s View

CPU Memory
Addresses S
Registers o Code
PC — < > Data
Condition Instructions Stack
Codes <

Programmer-Visible State

= PC: Program counter " Memory

= Address of next instruction * Byte addressable array

= Called “EIP” (IA32) or “RIP” (x86-64) = Code and user data
= Register file = Stack to support procedures
= Heavily used program data
= Condition codes

= Store status information about
most recent arithmetic operation

= Used for conditional branching 1

Turning C into Object Code

" Codeinfiles pl.c p2.c

= Compile with command: gcc -01 pl.c p2.c -o p
= Use basic optimizations (-01)
= Put resulting binary in file p

text C program (pl.c p2.c)

Compiler (gcc -S)

\ 4

text Asm program (pl.s p2.s)

Assembler (gcc or as)

binary Object program (pl.o p2.0) Static libraries
(.a)

Linker (gcc or 1d)

v

binary Executable program (p)

12

Carnegie Mellon

Compiling Into Assembly

C Code Generated IA32 Assembly
int sum(int x, int y) sum:
{ pushl %ebp
int t = x+y; movl 3%esp, Sebp
return t; movl 12 (%ebp) , %eax
} addl 8 (%ebp) , %eax
poprl 3ebp
ret

Obtain with command

/usr/local/bin/gcc -0l -S code.c

Produces file code. s

13

Carnegie Mellon

Assembly Characteristics: Data Types

m “Integer” data of 1, 2, or 4 bytes
= Data values
= Addresses (untyped pointers)

m Floating point data of 4, 8, or 10 bytes

m No aggregate types such as arrays or structures

= Just contiguously allocated bytes in memory

14

Assembly Characteristics: Operations

m Perform arithmetic function on register or memory data

m Transfer data between memory and register
® |Load data from memory into register
= Store register data into memory

m Transfer control

" Unconditional jumps to/from procedures
® Conditional branches

15

Object Code

Code for sum
m Assembler

0x401040 <sum>: _
" Translates .s into .o

0x55
0x89 = Binary encoding of each instruction
Oxe5 = Nearly-complete image of executable code
0x8b . . T
0245 = Missing linkages between code in different
0x0c files
0x03 m Linker
0x45 .
= Resolves references between files
0x08 Total of 11 bytes
0x5d y = Combines with static run-time libraries

O0xc3 e Each instruction

1, 2, or 3 bytes * E.g.,codeformalloc, printf

e Starts at address = Some libraries are dynamically linked

0x401040 = Linking occurs when program begins
execution

16

Carnegie Mellon

Machine Instruction Example
m C Code

= Add two signed integers

int t = x+ty;

m Assembly
= Add 2 4-byte integers
» “Long” words in GCC parlance

addl 8 (%ebp) , Seax

Similar to expression: = Same instruction whether signed
X += y or unsigned

More precisely: = Operands:

int eax; x: Register Teax

int *ebp; y: Memory M[%ebp+8]
eax += ebp[2] t: Register Seax

—Return function value in $eax
0x80483ca: 03 45 08 m Object Code
= 3-byte instruction
= Stored at address 0x80483ca

17

Disassembling Object Code

Disassembled

080483c4 <sum>:

80483c4: 55 push %ebp
80483c5: 89 e5 mov sesp, $ebp

80483c7: 8b 45 Oc mov Oxc (%ebp) , seax
80483ca: 03 45 08 add 0x8 (%ebp) , seax
80483cd: 5d pop %ebp

80483ce: c3 ret

m Disassembler
objdump -d p
= Useful tool for examining object code
= Analyzes bit pattern of series of instructions
" Produces approximate rendition of assembly code
® Can berunon either a.out (complete executable) or . o file

18

Carnegie Mellon

Alternate Disassembly

Disassembled

Object
0x401040:
0x55 Dump of assembler code for function sum:
0x89 0x080483c4 <sum+0>: push %ebp
Oxe5 0x080483c5 <sum+l>: mov sesp, 3ebp
0x8b 0x080483c7 <sum+3>: mov Oxc (%ebp) , %eax
0x45 0x080483ca <sum+6>: add 0x8 (%ebp) , 3eax
0x0c 0x080483cd <sum+9>: pop $ebp
0x03 0x080483ce <sum+10>: ret
0x45
0x08
0x5d m Within gdb Debugger
Oxc3
* gdb p

disassemble sum
= Disassemble procedure
x/11xb sum

= Examine the 11 bytes starting at sum

19

Carnegie Mellon

What Can be Disassembled?

$ objdump -d WINWORD.EXE
WINWORD . EXE: file format pei-i386

No symbols in "WINWORD.EXE".
Disassembly of section .text:

30001000 <.text>:

30001000: 55 push %ebp
30001001: 8b ec mov %esp, sebp
30001003: 6a ff push SOxXffffffff

30001005: 68 90 10 00 30 push $0x30001090
3000100a: 68 91 dc 4c 30 push $0x304cdc91l

m Anything that can be interpreted as executable code
m Disassembler examines bytes and reconstructs assembly source

20

Carnegie Mellon

Today: Machine Programming |: Basics

m History of Intel processors and architectures
m C, assembly, machine code

m Assembly Basics: Registers, operands, move
m Intro to x86-64

21

Carnegie Mellon

Integer Registers (1A32) Origin

(mostly obsolete)

~—
$eax $ax %$ah gal accumulate
) secx FCX %ch Scl counter
S
5 Sedx $dx %dh 2d1 data
2 <
©
o %ebx $bx $bh $bl base
Q
oo
(o) - o = source
°esl o S1 : des
o : o3 destination
_ Oedl sdi i ndes
o o stack
hadad °°P pointer
base
% $b
oebp P pointer
\)
\

16-bit virtual registers
(backwards compatibility) 2

Moving Data: IA32 %eax

= Moving Data secx
movl Source, Dest: Sedx

o
m Operand Types sebx
" Immediate: Constant integer data sesi
= Example: $0x400, $-533 Sedi
= Like C constant, but prefixed with 'S’ Qesp

o

= Encoded with 1, 2, or 4 bytes

sebp

= Register: One of 8 integer registers
= Example: $eax, %edx
= But $esp and $ebp reserved for special use
= Others have special uses for particular instructions

= Memory: 4 consecutive bytes of memory at address given by register
= Simplest example: (%eax)
= Various other “address modes”

23

Carnegie Mellon

movl Operand Combinations

Source Dest Src,Dest C Analog
4 Reg movl $0x4,%eax temp = 0x4;
Imm
Mem movl $-147, (%eax) *p = -147;

movl %eax, $edx t 2 = t 1;
movl < Reg {Reg v X emp emp

Mem movl %eax, (%edx) *p = temp;

kMem Reg movl (%eax), %edx temp = *p;

Cannot do memory-memory transfer with a single instruction

24

Carnegie Mellon

Simple Memory Addressing Modes

= Normal (R) Mem|[Reg|[R]]
= Register R specifies memory address
= Aha! Pointer dereferencing in C

movl (%ecx) ,%eax

m Displacement D(R) Mem[Reg[R]+D]
= Register R specifies start of memory region
" Constant displacement D specifies offset

movl 8 (%ebp) , $edx

25

Using Simple Addressing Modes

void swap(int *xp, int *yp)
{
int
int
*Xp =
*yp =

swap:
pushl
movl
pushl

movl
movl
movl
movl
movl
movl

popl
popl
ret

sebp
sesp, sebp
sebx

8 (%ebp) , %edx
12 (%ebp) , %ecx

$edx), %ebx
gecx), %eax
Seax, (%edx)
%ebx, (%ecx)
%$ebx
sebp

Carnegie Mellon

. Set

> Body

J

Finish

26

Using Simple Addressing Modes

swap:
pushl 3%ebp

void swap (int *xp, int *yp) movl %esp,%ebp Set
{ int £0 = *xp; pushl %ebx Up
int tl1 = *yp;)
*xp = t1; movl 8 (%ebp), %edx
*yp = tO0; movl 12 (%ebp), %ecx
} movl (%edx), %ebx > Body
movl (%ecx), %eax
movl %eax, (%edx)

movl %ebx, (%ecx) y,
popl %ebx

popl %ebp Finish
ret

27

Understanding Swap

void swap (int *xp, int *yp) : Stack
[J

{ .

int t0 = *XP; Offset * (ln memory)

int t1 = *yp;

*yp = tO; 8 Xp
}

4 Rtn adr

0 |Old %ebp[*— %ebp

-4 |Old %ebx|— $%
Register Value e ©sP
sedx Xp
secx VP
% ebx £0 movl 8 (%ebp), %edx # edx = xp
. movl 12 (%ebp), %ecx # ecx = yp
ceax tl movl (%edx), %ebx # ebx = *xp (tO0)
movl (%ecx), %eax # eax = *yp (tl)
movl $%eax, (%edx) # *xp = tl
movl %ebx, (%ecx) # *yp t0

28

Carnegie Mellon

Address
Understanding Swap 123 | ox124
456 0x120
Oxllc
seax 0x118
tedx Offset 0x114
Secx YP 12 [0x120 | ox110
8 | 0x124
%ebx *P gt 0x10c
4 Rtn adr 0x108
sesi 0
%ebp — 0x104
Fedi -4
0x100
sesp
movl 8 (%ebp), %edx # edx = xp
sebp| 0x104 movl 12 (%ebp), %ecx # ecx = yp
movl %$edx) , %ebx # ebx = *xp (tO0)
movl %ecx) , %eax # eax = *yp (tl)
movl %eax, (%edx) # *xp = tl
movl $%ebx, (%ecx) # *yp = t0

29

Carnegie Mellon

Address
Understanding Swap 123 | ox124
456 0x120
Oxllc
seax 0x118
edx| 0x124 Offset Ox114
Secx YP 12 |0x120 | 0x110
8 | 0x124
%ebx *P gt 0x10c
4 Rtn adr 0x108
sesi 0
%ebp — 0x104
Fedi -4
0x100
sesp
movl 8 (%ebp), %edx # edx = xp
sebp| 0x104 movl 12 (%ebp), %ecx # ecx = yp
movl %$edx) , %ebx # ebx = *xp (tO0)
movl %ecx) , %eax # eax = *yp (tl)
movl %eax, (%edx) # *xp = tl
movl $%ebx, (%ecx) # *yp = t0

30

Carnegie Mellon

Address
Understanding Swap 123 | ox124
456 0x120
Oxllc
seax 0x118
sedx| 0x124 Offset 0x114
secx| 0x120 YP 12 [0x120 | ox110
8 | 0x124
%ebx *P = 0x10c
4 Rtn adr 0x108
sesi 0
%ebp — 0x104
Fedi -4
0x100
sesp
movl 8 (%ebp), %edx # edx = xp
sebp| 0x104 movl 12 (%ebp), %ecx # ecx = yp
movl %$edx) , %ebx # ebx = *xp (tO0)
movl %ecx) , %eax # eax = *yp (tl)
movl %eax, (%edx) # *xp = tl
movl $%ebx, (%ecx) # *yp = t0

31

Carnegie Mellon

Address
Understanding Swap 123 | ox124
456 0x120
Oxllc
seax 0x118
sedx| 0x124 Offset 0x114
secx| 0x120 YP 12 [0x120 | ox110
3ebx 123 xp 8 10x124 | ox10c
4 Rtn adr 0x108
Sesi 0
%ebp — 0x104
Fedi -4
0x100
sesp
movl 8 (%ebp), %edx # edx = xp
sebp| 0x104 movl 12 (%ebp), %ecx # ecx = yp
movl (%edx), %ebx # ebx = *xp (tO0)
movl %ecx) , %eax # eax = *yp (tl)
movl %eax, (%edx) # *xp = tl
movl $%ebx, (%ecx) # *yp = t0

32

Carnegie Mellon

Address
Understanding Swap 123 | ox124
456 0x120
Oxllc
Teax 456 0x118
sedx| 0x124 Offset 0x114
secx| 0x120 YP 12 [0x120 | ox110
3ebx 123 P 8 10x124 | ox10c
4 Rtn adr 0x108
sesi 0
sebp — 0x104
Fedi -4
0x100
sesp
movl 8 (%ebp), %edx # edx = xp
sebp| 0x104 movl 12 (%ebp), %ecx # ecx = yp
movl %$edx) , %ebx # ebx = *xp (tO0)
movl %ecx) , %eax # eax = *yp (tl)
movl %eax, (%edx) # *xp = tl
movl $%ebx, (%ecx) # *yp = t0

33

Carnegie Mellon

Address
Understanding Swap 456 | ox124
456 0x120
Oxllc
eax 456 0x118
sedx| 0x124 Offset 0x114
secx| 0x120 YP 12 10x120 | ox110
3ebx| 123 P °19x124 | ox10c
4 Rtn adr 0x108
sesi 0
sebp — 0x104
Fedi -4
0x100
sesp
movl 8 (%ebp), %edx # edx = xp
sebp| 0x104 movl 12 (%ebp), %ecx # ecx = yp
movl %$edx) , %ebx # ebx = *xp (tO0)
movl %ecx) , %eax # eax = *yp (tl)
movl %eax, (%edx) # *xp = tl1
movl $%ebx, (%ecx) # *yp = t0

34

Carnegie Mellon

Address
Understanding Swap 456 | ox124
123 0x120
Oxllc
seax 456 0x118
sedx| 0x124 Offset 0x114
secx| 0x120 YP 12 [0x120 | ox110
3ebx 123 P 8 10x124 | ox10c
4 Rtn adr 0x108
sesi 0
%ebp — 0x104
Fedi -4
0x100
sesp
movl 8 (%ebp), %edx # edx = xp
sebp| 0x104 movl 12 (%ebp), %ecx # ecx = yp
movl %$edx) , %ebx # ebx = *xp (tO0)
movl %ecx) , %eax # eax = *yp (tl)
movl %eax, (%edx) # *xp = tl
movl $%ebx, (%ecx) # *yp = t0

35

Carnegie Mellon

Complete Memory Addressing Modes

m Most General Form
D(Rb,Ri,S) Mem[Reg[Rb]+S*Reg[Ri]+ D]
= D: Constant “displacement” 1, 2, or 4 bytes
= Rb: Base register: Any of 8 integer registers
= Ri: Index register: Any, except for $esp
= Unlikely you’d use %$ebp, either
= S: Scale: 1, 2, 4, or 8 (why these numbers?)

m Special Cases

(Rb,Ri) Mem|[Reg[Rb]+Reg[Ri]]
D(Rb,Ri) Mem[Reg[Rb]+Reg[Ri]+D]
(Rb,Ri,S) Mem|[Reg[Rb]+S*Reg[Ri]]

36

Carnegie Mellon

Today: Machine Programming |: Basics

m History of Intel processors and architectures

m C, assembly, machine code
m Assembly Basics: Registers, operands, move

m Intro to x86-64

37

Carnegie Mellon

Data Representations: IA32 + x86-64

m Sizes of C Objects (in Bytes)

C Data Type Generic 32-bit Intel IA32 x86-64
= unsigned 4 4 4
= int 4 4 4
= longint 4 4 8
= char 1 1 1
= short 2 2 2
= float 4 4 4
= double 8 8 8
= long double 8 10/12 10/16
= char * 4 4 8

38

Xx86-64 Integer Registers

$rax %eax %r8 %r8d

rbx %ebx $r9 $r9d

Srex %ecx %rl0 %rl10d
srdx %edx srll %$rlld
Srsi %esi %rl2 %rlad
srdi $edi 2$rl3 $rl3d
srsp %esp $rld %rldd
$rbp %ebp %rl5 %rldd

= Extend existing registers. Add 8 new ones.

= Make $ebp/%rbp general purpose

Carnegie Mellon

39

Carnegie Mellon

Instructions

m Long word 1 (4 Bytes) €2 Quad word g (8 Bytes)

m New instructions:
" movl=>movqg
" addl = addqg
" sall=>salqg

" etc.

m 32-bit instructions that generate 32-bit results

= Set higher order bits of destination register to @
= Example: addl

40

32-bit code for swap

swap: -
%
void swap(int *xp, int *yp) II:;‘S’]I]- %::g,%ebp .. Set
{ T pushl %ebx J Up
int tl1 = *yp; N
*xp = tl1; movl 8 (%ebp), %edx
*yp = t0; movl 12 (%ebp), %ecx
} movl %edx), %ebx > Body
movl gecx), %eax
movl $%Seax, (%edx)

movl $ebx, (%ecx) y,
popl $ebx

popl %ebp Finish
ret

4

Carnegie Mellon

64-bit code for swap

swap:
Set
void swap(int *xp, int *yp)
{ Up
int t0 = *xp; movl 3rdi) , %Sedx)
' = *yp: movl %rsi), %eax
int tl YP; . ,9 : > Body
*xp = tl; movl seax, (%rdi)
*yp = t0; movl %$Sedx, (%rsi))
}
ret } Finish

m Operands passed in registers (why useful?)
" First (xp) in $rdi, second (yp) in $rsi
" 64-bit pointers

m No stack operations required

m 32-bit data

= Data held in registers $eax and $edx
" movl operation "

Carnegie Mellon

64-bit code for long int swap

swap 1:

) Set
void swap(long *xp, long *yp) Up
{ -

long t0 = *xp; movq $rdi) , %Srdx O

long tl1 = *yp; movq (%rsi), Srax . Bod

*xp = tl; movq srax, (%rdi) ody

*yp = t0; movq srdx, (%rsi)
}

ret } Finish

m 64-bit data

= Data held in registers $rax and $rdx
" movg operation

o7

= “q” stands for quad-word

43

Carnegie Mellon

Machine Programming I: Summary

m History of Intel processors and architectures

= Evolutionary design leads to many quirks and artifacts

m C, assembly, machine code

= Compiler must transform statements, expressions, procedures into
low-level instruction sequences

m Assembly Basics: Registers, operands, move

" The x86 move instructions cover wide range of data movement
forms

m Intro to x86-64

= A major departure from the style of code seen in 1A32

44

