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Today: Floating Point

m Background: Fractional binary numbers
m |IEEE floating point standard: Definition
m Example and properties

m Rounding, addition, multiplication

m Floating pointin C

m Summary
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Fractional binary numbers

m Whatis 1011.101,?
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Fractional Binary Numbers
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= Bits to right of “binary point” represent fractional powers of 2
= Represents rational number:
P Z bk X 2k
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Fractional Binary Numbers: Examples

m Value Representation
5 3/4 101.11>
2 7/8 10.111;
1 7/16 1.0111;

m Observations
= Divide by 2 by shifting right (unsigned)
= Multiply by 2 by shifting left
" Numbers of form 0.111111...; are just below 1.0
= 1/2+1/4+1/8+...+1/2'+..=> 1.0
= Use notation 1.0 —¢
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Representable Numbers

m Limitation #1

= Can only exactly represent numbers of the form x/2*
= Other rational numbers have repeating bit representations

= Value Representation

= 1/3 0.0101010101[01]..
= 1/5 0.001100110011[0011]...2
- 1/10 0.0001100110011[0011]...2

m Limitation #2

= Just one setting of decimal point within the w bits
= Limited range of numbers (very small values? very large?)
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Today: Floating Point

m |IEEE floating point standard: Definition
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IEEE Floating Point

m |[EEE Standard 754

= Established in 1985 as uniform standard for floating point arithmetic
= Before that, many idiosyncratic formats
= Supported by all major CPUs

m Driven by numerical concerns
® Nice standards for rounding, overflow, underflow
" Hard to make fast in hardware

= Numerical analysts predominated over hardware designers in defining
standard
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Floating Point Representation

m Numerical Form:
(-1)* M 2E
= Sign bit s determines whether number is negative or positive
= Significand M normally a fractional value in range [1.0,2.0).
" Exponent E weights value by power of two

m Encoding
= MSB S is sign bit s
= exp field encodes E (but is not equal to E)
= frac field encodes M (but is not equal to M)

S |exp frac
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Precision options

m Single precision: 32 bits

S |exp frac

1 8-b1its 23-b1its

m Double precision: 64 bits

S |exp frac

1 11-bits 52-bits
m Extended precision: 80 bits (Intel only)

S |exp frac

1 15-b1its 03 or 64-bits
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“Normalized” Values

m When: exp #000...0and exp # 111...1

m Exponent coded as a biased value: E = Exp — Bias
= Exp: unsigned value exp
= Bjas = 2¥1-1, where k is number of exponent bits
= Single precision: 127 (Exp: 1...254, E: -126...127)
= Double precision: 1023 (Exp: 1...2046, E: -1022...1023)

m Significand coded with implied leading 1: M = 1.XXX...X2
" XXX..X: bits of frac
= Minimum when frac=000...0 (M = 1.0)
= Maximum when frac=111..1 (M =2.0-¢)
" Get extra leading bit for “free”

1
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Normalized Encoding Example

m Value: Float F = 15213.0;
= 15213,, =11101101101101,
=1.1101101101101, x 213

m Significand

M = 1.1101101101101,

frac= 11011011011010000000000,
m Exponent

E = 13

Bias = 127

Exp = 140 = 10001100,
m Result:

0/110001100/111011011011010000000000
S exp frac

12
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Denormalized Values

m Condition: exp = 000...0

m Exponent value: E = —Bias + 1 (instead of E = 0 — Bias)
m Significand coded with implied leading 0: M = 0.xxx...x2

" xxx..x: bits of frac

m Cases
" exp=000.0, frac=000..0
= Represents zero value
= Note distinct values: +0 and —0 (why?)
" exp =000..0, frac #000..0
= Numbers closest to 0.0
= Equispaced

13
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Special Values

m Condition: exp=111..1

m Case: exp=111..1, frac =000..9

= Represents value @ (infinity)

= QOperation that overflows

= Both positive and negative

E.g., 1.0/0.0=-1.0/-0.0 = +o0, 1.0/-0.0 = -

m Case: exp=111..1, frac # 000..0
= Not-a-Number (NaN)

® Represents case when no numeric value can be determined
= E.g., sqrt(—1), 00 — 0,00 x 0

14



Carnegie Mellon

Visualization: Floating Point Encodings
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Today: Floating Point

m Example and properties

16
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Tiny Floating Point Example

S exp frac

1 4-bits 3-bits

m 8-bit Floating Point Representation
® the sign bit is in the most significant bit
® the next four bits are the exponent, with a bias of 7
® the last three bits are the frac

m Same general form as IEEE Format
® normalized, denormalized
= representation of 0, NaN, infinity
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Dynamlc Range (Positive Only)

exp frac E Value

0 0000 0OO -6 0

0 0000 OO1 -6 1/8*1/64 = 1/512 closest to zero
numbers -

0 0000 110 -6 6/8*1/64 = 6/512

0 0000 111 -6 7/8*1/64 = 7/512 largest denorm

0 0001 00O -6 8/8*1/64 = 8/512

smallest norm

0 0001 o001 -6 9/8*1/64 = 9/512

0 0110 110 -1 14/8*1/2 = 14/16

0 0110 111 -1 15/8*1/2 = 15/16 closest to 1 below
Normalized 0 0111 o000 0 8/8*1 =1
T O 0 0111 oo01 0 9/8*1 = 9/8 closest to 1 above

0 0111 o010 0 10/8*1 = 10/8

0 1110 110 7 14/8*%128 = 224

0 1110 111 7 15/8*128 = 240 |argest norm

0 1111 o000 n/a inf
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Distribution of Values

m 6-bit IEEE-like format

" e =3 exponent bits
= f =2 fraction bits = =22 frac
" Biasis 23-1-1=3 1 3-bits 2-b1its

m Notice how the distribution gets denser toward zero.

/8values
A A A

-15 -10 -9 0 5 10 15
¢ Denormalized A Normalized  Infinity
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Distribution of Values (close-up view)

m 6-bit IEEE-like format

" e =3 exponent bits
= f =2 fraction bits S eXp frac
= Biasis3 1 3-bits 2-b1its

hA—Ah A A A A A 6060600600 h kA i i A A A —A
-1 -0.5 0 0.5 1
¢ Denormalized A Normalized B Infinity

20
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Special Properties of the IEEE Encoding

m FP Zero Same as Integer Zero
= All bits=0

m Can (Almost) Use Unsigned Integer Comparison
" Must first compare sign bits
® Must consider-0=0
= NaNs problematic
= Will be greater than any other values
= What should comparison yield?
= Otherwise OK
= Denorm vs. normalized

= Normalized vs. infinity

21
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Today: Floating Point

Rounding, addition, multiplication

22



Floating Point Operations: Basic Idea

mx +f yv = Round(x + V)

X Xf VY Round (x %X vy)

m Basic idea
® First compute exact result
= Make it fit into desired precision
= Possibly overflow if exponent too large
= Possibly round to fitinto frac

23
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Rounding

m Rounding Modes (illustrate with S rounding)

O S1.40 S1.60 S1.50 S2.50 -S1.50
= Towards zero S1 S1 S1 S2 -S1
= Round down (-) S1 S1 S1 S2 -S2
= Round up (+x) S2 S2 S2 S3 -S1

= Nearest Even (default) S1 S2 S2 S2 -S2

24
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Closer Look at Round-To-Even

m Default Rounding Mode
" Hard to get any other kind without dropping into assembly
= All others are statistically biased

= Sum of set of positive numbers will consistently be over- or under-
estimated

m Applying to Other Decimal Places / Bit Positions
= When exactly halfway between two possible values
= Round so that least significant digit is even
= E.g., round to nearest hundredth

1.2349999 1.23 (Less than half way)
1.2350001 1.24 (Greater than half way)
1.2350000 1.24 (Half way—round up)

1.2450000 1.24 (Half way—round down)

25
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Rounding Binary Numbers

m Binary Fractional Numbers
= “Even” when least significant bit is @
= “Half way” when bits to right of rounding position = 100...2

m Examples
® Round to nearest 1/4 (2 bits right of binary point)
Value Binary Rounded Action Rounded Value
23/32 10.00011; 10.00; (<1/2—down) 2
23/16 10.00110; 10.01; (>1/2—up) 21/4
27/8 10.11100; 11.00; ( 1/2—up) 3

25/8 10.101002 10.102 ( 1/2—down) 21/2
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FP Multiplication

m(-1)5' M1 281 x (—1)2 M2 2F2
m Exact Result: (-1)* M 2°F

" Sign s: s1”7s2
= Significand M: M1 x M2
" Exponent E: E1l+E2

m Fixing

= |f M 2 2, shift M right, increment E
" |f E out of range, overflow
" Round M to fit frac precision

m Implementation
= Biggest chore is multiplying significands
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Floating Point Addition

m(-1)1 M1 2F8 + (-1)2 M2 2F2

EAssume E1 > E2

J——E1-E2 —3]
(-1)* M1
m Exact Result: (-1)* M 2°F
=Sign s, significand M: + (-1)2 M2
= Result of signed align & add
"Exponent E: E1 (1) M
m Fixing

=|lf M > 2, shift M right, increment E

=if M < 1, shift M left k positions, decrement E by k
=Qverflow if E out of range

="Round M to fit frac precision

28
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Today: Floating Point

Floating point in C

29
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Floating Point in C

m C Guarantees Two Levels
"float single precision
"double double precision

m Conversions/Casting
mCasting between int, float, and double changes bit representation
" dJouble/float 2 int
= Truncates fractional part
= Like rounding toward zero
= Not defined when out of range or NaN: Generally sets to TMin
" int - double
= Exact conversion, as long as int has £ 53 bit word size
"int 2> float
= Will round according to rounding mode

30
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Summary

m |[EEE Floating Point has clear mathematical properties
m Represents numbers of form M x 2¢

m One can reason about operations independent of
implementation

= As if computed with perfect precision and then rounded

m Not the same as real arithmetic
= Violates associativity/distributivity

= Makes life difficult for compilers & serious numerical applications
programmers

3
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Floating Point Puzzles

m For each of the following C expressions, either:
= Argue that it is true for all argument values
= Explain why not true

- X == (1nt)(float) x
- X == (int)(double) x
el o - f == (float)(double) f
float f = .; * d == (float) d
double d = ..; + == -(-1);
- 2/3 == 2/3.0
Assume neither - d <0.0 = ((d*2) < 0.0)
d nor £ is NaN - d>f = -f > -d

- d*d>= 0.0
¢ (d+f)-d ==

32
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More Slides

33
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Today: Floating Point

Summary

34
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Interesting Numbers {single, double}
Description exp frac Numeric Value

m Zero 00...00 00...00 0.0

m Smallest Pos. Denorm. 00..00 00..01 27 123,52} y 9—1{126,1022}

" Single=1.4x10™%
" Double = 4.9 x 10732
m Largest Denormalized 00..00 11..11 (1.0 — g) x 2~ {126,1022}
= Single=~1.18 x 10738
" Double =2.2 x1073%

m Smallest Pos. Normalized 00...01 00...00 1.0 x 2~1126,1022}
= Just larger than largest denormalized
m One 01..11 00...00 1.0
m Largest Normalized 11..10 11..11 (2.0 — g) x 211271023

" Single =3.4x 1038
" Double = 1.8 x 103%
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Mathematical Properties of FP Add

m Compare to those of Abelian Group
" Closed under addition?

= But may generate infinity or NaN

Commutative?

Associative?

= Overflow and inexactness of rounding
0 is additive identity?

Every element has additive inverse

= Except for infinities & NaNs
m Monotonicity

" 3>b = a+c>b+c?

= Except for infinities & NaNs
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Mathematical Properties of FP Mult

m Compare to Commutative Ring
" Closed under multiplication?
= But may generate infinity or NaN
" Multiplication Commutative?
" Multiplication is Associative?
= Possibility of overflow, inexactness of rounding

1 is multiplicative identity?

Multiplication distributes over addition?
= Possibility of overflow, inexactness of rounding

m Monotonicity
"a>b &c=>20 =a*c2b*c?

= Except for infinities & NaNs

37
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Creating Floating Point Number

m Steps S exp frac
= Normalize to have leading 1 1 4-bits 3_pits

= Round to fit within fraction

® Postnormalize to deal with effects of rounding

m Case Study

= Convert 8-bit unsigned numbers to tiny floating point format

Example Numbers

128 10000000
15 00001101
33 00010001
35 00010011

138 10001010
03 00111111
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Normalize s| exp frac
1 4-bits 3-bits

m Requirement
= Set binary point so that numbers of form 1.xxxxx
® Adjust all to have leading one
= Decrement exponent as shift left

Value Binary Fraction Exponent
128 10000000 1.0000000 7
15 00001101 1.1010000 3
17 00010001 1.0001000 4
19 00010011 1.0011000 4
138 10001010 1.0001010 7
63 00111111 1.1111100 5
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Rounding

1.BBGRXXX

Guard bit: LSB of result \/ '

Sticky bit: OR of remaining bits

Round bit: 1% bit removed

m Round up conditions
" Round =1, Sticky=1=>>0.5
® Guard =1, Round =1, Sticky = 0 => Round to even

Value
128
15
17
19
138
63

Fraction

1.0000000
1.1010000
1.0001000
1.0011000
1.0001010
1.1111100

GRS
000
100
010
110
011
111

Incr?
N

N
N
Y
Y
Y

Rounded

1.000
1.101
1.000
1.010
1.001
10.000

Carnegie Mellon
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Postnormalize

m Issue

® Rounding may have caused overflow
" Handle by shifting right once & incrementing exponent

Value Rounded Exp Adjusted Result
128 1.000 / 128
15 1.101 3 15
17 1.000 4 16
19 1.010 4 20
138 1.001 / 134
63 10.000 5 1.000/6 64
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