Carnegie Mellon

Floating Point

15-213: Introduction to Computer Systems
4th Lecture, Sep 6, 2012

Instructors:
Dave O’Hallaron, Greg Ganger, and Greg Kesden

Carnegie Mellon

Today: Floating Point

m Background: Fractional binary numbers
m |IEEE floating point standard: Definition
m Example and properties

m Rounding, addition, multiplication

m Floating pointin C

m Summary

Carnegie Mellon

Fractional binary numbers

m Whatis 1011.101,?

Carnegie Mellon

Fractional Binary Numbers

2I
2i—1
4
[I N | ‘ 2
— 1
bi |bit| e | by | b bolb-l b2 | bs|ees| b
12 — |
1/4 [I AN J
1/8
m Representation 2]

= Bits to right of “binary point” represent fractional powers of 2
= Represents rational number:
P Z bk X 2k

Carnegie Mellon

Fractional Binary Numbers: Examples

m Value Representation
5 3/4 101.11>
2 7/8 10.111;
1 7/16 1.0111;

m Observations
= Divide by 2 by shifting right (unsigned)
= Multiply by 2 by shifting left
" Numbers of form 0.111111...; are just below 1.0
= 1/2+1/4+1/8+...+1/2'+..=> 1.0
= Use notation 1.0 —¢

Carnegie Mellon

Representable Numbers

m Limitation #1

= Can only exactly represent numbers of the form x/2*
= Other rational numbers have repeating bit representations

= Value Representation

= 1/3 0.0101010101[01]..
= 1/5 0.001100110011[0011]...2
- 1/10 0.0001100110011[0011]...2

m Limitation #2

= Just one setting of decimal point within the w bits
= Limited range of numbers (very small values? very large?)

Carnegie Mellon

Today: Floating Point

m |IEEE floating point standard: Definition

Carnegie Mellon

IEEE Floating Point

m |[EEE Standard 754

= Established in 1985 as uniform standard for floating point arithmetic
= Before that, many idiosyncratic formats
= Supported by all major CPUs

m Driven by numerical concerns
® Nice standards for rounding, overflow, underflow
" Hard to make fast in hardware

= Numerical analysts predominated over hardware designers in defining
standard

Carnegie Mellon

Floating Point Representation

m Numerical Form:
(-1)* M 2E
= Sign bit s determines whether number is negative or positive
= Significand M normally a fractional value in range [1.0,2.0).
" Exponent E weights value by power of two

m Encoding
= MSB S is sign bit s
= exp field encodes E (but is not equal to E)
= frac field encodes M (but is not equal to M)

S |exp frac

Carnegie Mellon

Precision options

m Single precision: 32 bits

S |exp frac

1 8-b1its 23-b1its

m Double precision: 64 bits

S |exp frac

1 11-bits 52-bits
m Extended precision: 80 bits (Intel only)

S |exp frac

1 15-b1its 03 or 64-bits

10

Carnegie Mellon

“Normalized” Values

m When: exp #000...0and exp # 111...1

m Exponent coded as a biased value: E = Exp — Bias
= Exp: unsigned value exp
= Bjas = 2¥1-1, where k is number of exponent bits
= Single precision: 127 (Exp: 1...254, E: -126...127)
= Double precision: 1023 (Exp: 1...2046, E: -1022...1023)

m Significand coded with implied leading 1: M = 1.XXX...X2
" XXX..X: bits of frac
= Minimum when frac=000...0 (M = 1.0)
= Maximum when frac=111..1 (M =2.0-¢)
" Get extra leading bit for “free”

1

Carnegie Mellon

Normalized Encoding Example

m Value: Float F = 15213.0;
= 15213,, =11101101101101,
=1.1101101101101, x 213

m Significand

M = 1.1101101101101,

frac= 11011011011010000000000,
m Exponent

E = 13

Bias = 127

Exp = 140 = 10001100,
m Result:

0/110001100/111011011011010000000000
S exp frac

12

Carnegie Mellon

Denormalized Values

m Condition: exp = 000...0

m Exponent value: E = —Bias + 1 (instead of E = 0 — Bias)
m Significand coded with implied leading 0: M = 0.xxx...x2

" xxx..x: bits of frac

m Cases
" exp=000.0, frac=000..0
= Represents zero value
= Note distinct values: +0 and —0 (why?)
" exp =000..0, frac #000..0
= Numbers closest to 0.0
= Equispaced

13

Carnegie Mellon

Special Values

m Condition: exp=111..1

m Case: exp=111..1, frac =000..9

= Represents value @ (infinity)

= QOperation that overflows

= Both positive and negative

E.g., 1.0/0.0=-1.0/-0.0 = +o0, 1.0/-0.0 = -

m Case: exp=111..1, frac # 000..0
= Not-a-Number (NaN)

® Represents case when no numeric value can be determined
= E.g., sqrt(—1), 00 — 0,00 x 0

14

Carnegie Mellon

Visualization: Floating Point Encodings

—00 . _ +00
| —~Normalized |—Denorm N 5+Denorm | +Normalized |
| | / | \ | |
NaN
NaN
Ry 0 40 Ml

15

Carnegie Mellon

Today: Floating Point

m Example and properties

16

Carnegie Mellon

Tiny Floating Point Example

S exp frac

1 4-bits 3-bits

m 8-bit Floating Point Representation
® the sign bit is in the most significant bit
® the next four bits are the exponent, with a bias of 7
® the last three bits are the frac

m Same general form as IEEE Format
® normalized, denormalized
= representation of 0, NaN, infinity

17

Dynamlc Range (Positive Only)

exp frac E Value

0 0000 0OO -6 0

0 0000 OO1 -6 1/8*1/64 = 1/512 closest to zero
numbers -

0 0000 110 -6 6/8*1/64 = 6/512

0 0000 111 -6 7/8*1/64 = 7/512 largest denorm

0 0001 00O -6 8/8*1/64 = 8/512

smallest norm

0 0001 o001 -6 9/8*1/64 = 9/512

0 0110 110 -1 14/8*1/2 = 14/16

0 0110 111 -1 15/8*1/2 = 15/16 closest to 1 below
Normalized 0 0111 o000 0 8/8*1 =1
T O 0 0111 oo01 0 9/8*1 = 9/8 closest to 1 above

0 0111 o010 0 10/8*1 = 10/8

0 1110 110 7 14/8*%128 = 224

0 1110 111 7 15/8*128 = 240 |argest norm

0 1111 o000 n/a inf

18

Carnegie Mellon

Distribution of Values

m 6-bit IEEE-like format

" e =3 exponent bits
= f =2 fraction bits = =22 frac
" Biasis 23-1-1=3 1 3-bits 2-b1its

m Notice how the distribution gets denser toward zero.

/8values
A A A

-15 -10 -9 0 5 10 15
¢ Denormalized A Normalized Infinity

19

Carnegie Mellon

Distribution of Values (close-up view)

m 6-bit IEEE-like format

" e =3 exponent bits
= f =2 fraction bits S eXp frac
= Biasis3 1 3-bits 2-b1its

hA—Ah A A A A A 6060600600 h kA i i A A A —A
-1 -0.5 0 0.5 1
¢ Denormalized A Normalized B Infinity

20

Carnegie Mellon

Special Properties of the IEEE Encoding

m FP Zero Same as Integer Zero
= All bits=0

m Can (Almost) Use Unsigned Integer Comparison
" Must first compare sign bits
® Must consider-0=0
= NaNs problematic
= Will be greater than any other values
= What should comparison yield?
= Otherwise OK
= Denorm vs. normalized

= Normalized vs. infinity

21

Carnegie Mellon

Today: Floating Point

Rounding, addition, multiplication

22

Floating Point Operations: Basic Idea

mx +f yv = Round(x + V)

X Xf VY Round (x %X vy)

m Basic idea
® First compute exact result
= Make it fit into desired precision
= Possibly overflow if exponent too large
= Possibly round to fitinto frac

23

Carnegie Mellon

Rounding

m Rounding Modes (illustrate with S rounding)

O S1.40 S1.60 S1.50 S2.50 -S1.50
= Towards zero S1 S1 S1 S2 -S1
= Round down (-) S1 S1 S1 S2 -S2
= Round up (+x) S2 S2 S2 S3 -S1

= Nearest Even (default) S1 S2 S2 S2 -S2

24

Carnegie Mellon

Closer Look at Round-To-Even

m Default Rounding Mode
" Hard to get any other kind without dropping into assembly
= All others are statistically biased

= Sum of set of positive numbers will consistently be over- or under-
estimated

m Applying to Other Decimal Places / Bit Positions
= When exactly halfway between two possible values
= Round so that least significant digit is even
= E.g., round to nearest hundredth

1.2349999 1.23 (Less than half way)
1.2350001 1.24 (Greater than half way)
1.2350000 1.24 (Half way—round up)

1.2450000 1.24 (Half way—round down)

25

Carnegie Mellon

Rounding Binary Numbers

m Binary Fractional Numbers
= “Even” when least significant bit is @
= “Half way” when bits to right of rounding position = 100...2

m Examples
® Round to nearest 1/4 (2 bits right of binary point)
Value Binary Rounded Action Rounded Value
23/32 10.00011; 10.00; (<1/2—down) 2
23/16 10.00110; 10.01; (>1/2—up) 21/4
27/8 10.11100; 11.00; (1/2—up) 3

25/8 10.101002 10.102 (1/2—down) 21/2

26

FP Multiplication

m(-1)5' M1 281 x (—1)2 M2 2F2
m Exact Result: (-1)* M 2°F

" Sign s: s1”7s2
= Significand M: M1 x M2
" Exponent E: E1l+E2

m Fixing

= |f M 2 2, shift M right, increment E
" |f E out of range, overflow
" Round M to fit frac precision

m Implementation
= Biggest chore is multiplying significands

27

Floating Point Addition

m(-1)1 M1 2F8 + (-1)2 M2 2F2

EAssume E1 > E2

J——E1-E2 —3]
(-1)* M1
m Exact Result: (-1)* M 2°F
=Sign s, significand M: + (-1)2 M2
= Result of signed align & add
"Exponent E: E1 (1) M
m Fixing

=|lf M > 2, shift M right, increment E

=if M < 1, shift M left k positions, decrement E by k
=Qverflow if E out of range

="Round M to fit frac precision

28

Carnegie Mellon

Today: Floating Point

Floating point in C

29

Carnegie Mellon

Floating Point in C

m C Guarantees Two Levels
"float single precision
"double double precision

m Conversions/Casting
mCasting between int, float, and double changes bit representation
" dJouble/float 2 int
= Truncates fractional part
= Like rounding toward zero
= Not defined when out of range or NaN: Generally sets to TMin
" int - double
= Exact conversion, as long as int has £ 53 bit word size
"int 2> float
= Will round according to rounding mode

30

Carnegie Mellon

Summary

m |[EEE Floating Point has clear mathematical properties
m Represents numbers of form M x 2¢

m One can reason about operations independent of
implementation

= As if computed with perfect precision and then rounded

m Not the same as real arithmetic
= Violates associativity/distributivity

= Makes life difficult for compilers & serious numerical applications
programmers

3

Carnegie Mellon

Floating Point Puzzles

m For each of the following C expressions, either:
= Argue that it is true for all argument values
= Explain why not true

- X == (1nt)(float) x
- X == (int)(double) x
el o - f == (float)(double) f
float f = .; * d == (float) d
double d = ..; + == -(-1);
- 2/3 == 2/3.0
Assume neither - d <0.0 = ((d*2) < 0.0)
d nor £ is NaN - d>f = -f > -d

- d*d>= 0.0
¢ (d+f)-d ==

32

Carnegie Mellon

More Slides

33

Carnegie Mellon

Today: Floating Point

Summary

34

Carnegie Mellon

Interesting Numbers {single, double}
Description exp frac Numeric Value

m Zero 00...00 00...00 0.0

m Smallest Pos. Denorm. 00..00 00..01 27 123,52} y 9—1{126,1022}

" Single=1.4x10™%
" Double = 4.9 x 10732
m Largest Denormalized 00..00 11..11 (1.0 — g) x 2~ {126,1022}
= Single=~1.18 x 10738
" Double =2.2 x1073%

m Smallest Pos. Normalized 00...01 00...00 1.0 x 2~1126,1022}
= Just larger than largest denormalized
m One 01..11 00...00 1.0
m Largest Normalized 11..10 11..11 (2.0 — g) x 211271023

" Single =3.4x 1038
" Double = 1.8 x 103%

35

Carnegie Mellon

Mathematical Properties of FP Add

m Compare to those of Abelian Group
" Closed under addition?

= But may generate infinity or NaN

Commutative?

Associative?

= Overflow and inexactness of rounding
0 is additive identity?

Every element has additive inverse

= Except for infinities & NaNs
m Monotonicity

" 3>b = a+c>b+c?

= Except for infinities & NaNs

36

Carnegie Mellon

Mathematical Properties of FP Mult

m Compare to Commutative Ring
" Closed under multiplication?
= But may generate infinity or NaN
" Multiplication Commutative?
" Multiplication is Associative?
= Possibility of overflow, inexactness of rounding

1 is multiplicative identity?

Multiplication distributes over addition?
= Possibility of overflow, inexactness of rounding

m Monotonicity
"a>b &c=>20 =a*c2b*c?

= Except for infinities & NaNs

37

Carnegie Mellon

Creating Floating Point Number

m Steps S exp frac
= Normalize to have leading 1 1 4-bits 3_pits

= Round to fit within fraction

® Postnormalize to deal with effects of rounding

m Case Study

= Convert 8-bit unsigned numbers to tiny floating point format

Example Numbers

128 10000000
15 00001101
33 00010001
35 00010011

138 10001010
03 00111111

38

Carnegie Mellon

Normalize s| exp frac
1 4-bits 3-bits

m Requirement
= Set binary point so that numbers of form 1.xxxxx
® Adjust all to have leading one
= Decrement exponent as shift left

Value Binary Fraction Exponent
128 10000000 1.0000000 7
15 00001101 1.1010000 3
17 00010001 1.0001000 4
19 00010011 1.0011000 4
138 10001010 1.0001010 7
63 00111111 1.1111100 5

39

Rounding

1.BBGRXXX

Guard bit: LSB of result \/ '

Sticky bit: OR of remaining bits

Round bit: 1% bit removed

m Round up conditions
" Round =1, Sticky=1=>>0.5
® Guard =1, Round =1, Sticky = 0 => Round to even

Value
128
15
17
19
138
63

Fraction

1.0000000
1.1010000
1.0001000
1.0011000
1.0001010
1.1111100

GRS
000
100
010
110
011
111

Incr?
N

N
N
Y
Y
Y

Rounded

1.000
1.101
1.000
1.010
1.001
10.000

Carnegie Mellon

40

Carnegie Mellon

Postnormalize

m Issue

® Rounding may have caused overflow
" Handle by shifting right once & incrementing exponent

Value Rounded Exp Adjusted Result
128 1.000 / 128
15 1.101 3 15
17 1.000 4 16
19 1.010 4 20
138 1.001 / 134
63 10.000 5 1.000/6 64

4

