Shell Lab + How to C



Agenda

Problem 5 and 9

C Stuff from Cachelab.
Processes and Signals.
Shellab hints and tips.



Problem 5

Initial stack frame

OXFFFF1008
18 OXFFFF1004
213 OXFFFF1000

Return address OXFFFFOFFC

VALUE ADDRESS

15t call stack frame

OXFFFFOFF8
UNK OXFFFFOFF4
UNK OXFFFFOFFO
15 OXFFFFOFEC
18 OXFFFFOFE8

0X080483B7 OXFFFFOFE4



Problem 5

e 20d stack frame

OXFFFFOFF8  OXFFFFOFEQ

UNK OXFFFFOFDC
UNK OXFFFFOFD8
3 OXFFFFOFDA4
15 OXFFFFOFDO

0X080483B7 OXFFFFOFCC

VALUE ADDRESS

OXFFFFOFEO OXFFFFOFC8

e 3rdstack frame

UNK OXFFFFOFC4
UNK OXFFFFOFCO
0 OXFFFFOFBC

3 OXFFFFOFB8



Problem 9

* Part A:
— Accessing A row wise for 1 miss ... 15 hits.
— Accessing B column wise for 1 miss ... 1 hit.
— Total is roughly %

— The idea here is to look at access patterns and not
individual memory accesses.

— Need to move to a higher level.



Problem 9

* Part9
— Access A row wise.
— Access B row wise.
— Both are 1 miss ... 15 hits.
— Approx miss rate 1/16.



Agenda

Problem 5and 9

C Stuff from Cachelab.
Processes and Signals.

Shellab hints and tips.



C Stuff from Cachelab

Always check for NULL return from a malloc.
If your code does not look like this:

char *foo = malloc(200);

if (!foo) {
error(“malloc failed”);

}

Then you are doing something terribly wrong.
This should be second nature.



C Stuff from Cachelab

e Sanity checking arguments.

* |f you get a value from outside of your
program, and you expect it to have a

particular value, you must check to make sure
it has that value.



C Stuff from Cachelab

e 80 column limit:
—grep '.\181,\}' *.cC

* Indentation, convert all tabs to spaces.
—:1set expandtab and :retab in VIM
—M-x untabify 1in EMACS



Agenda

Problem 5and 9

C Stuff from Cachelab.
Processes and Signals.
Shellab hints and tips.



Processes

* Four basic process control functions
— fork()
— exec()
— exit()
— wait()

e Standard on all Unix systems



Processes

e fork()

— Creates a process
— Parent and child are exactly alike

* Equal but separate
— Execution (%eip)
— Registers
— Memory
— File descriptors, the files themselves are shared.



Processes

e exec()
— Replaces process context
— How programs are run

* Replace memory image with a new program
* Set up stack with arguments
» Start execution at the entry point (main)

— A family of functions (man 3 exec)



Processes

e exit()
— Terminates a process
— OS frees resources used by the process

— Tiny leftover data

 Exit status for the parent
* Must be freed

* Which brings us to ...



Processes

wait()
— Waits for a child to change state

— If a child terminates, the parent “reaps” the child,
freeing all resources and getting the exit status

— Lots of details (man 2 wait)



Signals

Interprocess communication/notification
Asynchronous with normal execution
Come in many types (man 7 signal)

Sent in various ways
— AC; AZ; A\
— kill (which we will demonstrate)



Signals

* Disposition
— Ignore
— Catch and run a signal handler
— Terminate
— man sigaction
* Blocking
— man sigprocmask
* Waiting
— man sigsuspend (don’t need this, but cool)



Agenda

Problem 5and 9

C Stuff from Cachelab.
Processes and Signals.
Shellab hints and tips.



Shellab

Read the code we’ve given you.

— There is a lot of stuff you don’t need to write for
yourself.

— It’s a good example of the kind of code we expect
from you.



Shellab

* If you find yourself using sleep() as a way of
avoiding race conditions, you are doing it
VERY wrong. We will dock performance points
for this.

* You should only use it for performance to
avoid your code having to execute useless
instructions. Your code should still work if we
remove calls to sleep.



Shellab

e Hazards
— Race conditions

* Hard to debug so start early.
— Reaping zombies

* Race conditions

* Fiddle with signals
— Waiting for foreground job

* One of the only places where sleep is acceptable
(though you don’t NEED it)



