Cachelab

Outline

Memory organization

Caching
— Different types of locality
— Cache organization

Cachelab

— Warnings are errors
— Part (a) Building Cache Simulator
— Part (b) Efficient Matrix Transpose

Blocking

Outline

Memory organization

Caching
— Different types of locality
— Cache organization

Cachelab

— Warnings are errors
— Part (a) Building Cache Simulator
— Part (b) Efficient Matrix Transpose

Blocking

Memory Hierarchy

Registers

SRAM . |
Today: we study this interaction
to give you an idea how caching

DRAM works

Local Secondary storage

Remote Secondary storage

SRAM vs DRAM tradeoff

 SRAM (cache)
— Faster (L1 cache: 1 CPU cycle)
— Smaller (Kilobytes (L1) or Megabytes (L2))
— More expensive and “energy-hungry”

« DRAM (main memory)
— Relatively slower (hundreds of CPU cycles)
— Larger (Gigabytes)
— Cheaper

Outline

Memory organization

Caching
— Different types of locality
— Cache organization

Cachelab

— Technical Questions
— Part (a) Building Cache Simulator
— Part (b) Efficient Matrix Transpose

Blocking

Caching

* Temporal locality

— A memory location accessed is likely to be
accessed again multiple times in the future

— After accessing address X in memory, save the
bytes in cache for future access

e Spatial locality

— |f a location is accessed, then nearby locations are
likely to be accessed in the future.

— After accessing address X, save the block of
memory around X in cache for future access

Memory Address

e 64-bit on shark machines

memory address

tag set index block offset

 Block offset: b bits
 Setindex: s bits

Cache

 Acache is a set of 2As cache sefts

A cache setis a set of E cache lines
— E Is called associativity
— If E=1, it is called “direct-mapped”

« Each cache line stores a block
— Each block has 27b bytes

Outline

Memory organization

Caching
— Different types of locality
— Cache organization

Cachelab

— Warnings are errors
— Part (a) Building Cache Simulator
— Part (b) Efficient Matrix Transpose

Blocking

Cachelab

Warnings are errors!

Include proper header files

Part (a) Building a cache simulator

Part (b) Optimizing matrix transpose

Warnings are Errors

* Strict compilation flags

* Reasons:
— Avoid potential errors that are hard to debug
— Learn good habits from the beginning

Missing Header Files

* |f function declaration is missing
— Find corresponding header files
— Use: man <function-name>

* Live example
— man 3 getopt

Getopt function

SETOPT(3) Linux Prograraer's Manual GETOPT (3)

arse comonand-line options

finclude <unistd.h>

int getopti{int argc, char * const argv([],
const char *optstring):

extern char *optarg;
extern int optind, opterr, optopt;

fidefine GNU SOURCE
#include <getopt.h>

int getopt long(int argc, char * const argv([],
const char *optstring,
const struct option *longopts, int *longindex

int getopt long only(int argc, char * const argv(],
const char *optstring,
const struct option *longopts, int *longindex

DESCRIPTION
The getopti) parses the comwand-line arguments. Its arguments argc and argwv

count and array as pass A he main() function on prograw invocation. An element of
with [not exactly "-" or) is an option element. The characters of this

Part (a) Cache simulator

A cache simulator is NOT a cache!

— Memory contents NOT stored
— Block offsets are NOT used

— Simply counts hits, misses, and evictions

 Your cache simulator need to work for
different s, b, E, given at run time.

* Use LRU replacement policy

Cache simulator: Hints

* Acacheis just 2D array of cache lines:
— struct cache_line cache[S][E];
— S =2A7s, is the number of sets
— E Is associativity
* Each cache_line has:
— Valid bit
— Tag
— LRU counter

Part (b) Efficient Matrix Transpose

» Matrix Transpose (A -> B)
Matrix B
1 5

5 6 7 8
9 10 11 12

13 14 15 16

Matrix A
1 2

2 6 10 14

3 7 11 15

4 3 12 16

Part (b) Efficient Matrix Transpose

« Matrix Transpose (A -> B)
« Suppose block size is 8 bytes (2 ints)

Matrix A Matrix B

- -

5 6 7 8 2
9 10 11 12

13 14 15 16

Access A[0][0] cache miss
Access B[0][0] cache miss Question: After we handle

Access A[Q][1] cache hit_ 1&2. Should we handle 3&4
Access B[1][0] cache miss first, or 5&6 first ?

Blocking

 What inspiration do you get from previous
slide ?
— Divide matrix into sub-matrices
— This is called blocking (CSAPP2e p.629)

— Size of sub-matrix depends on
e cache block size, cache size, input matrix size

— Try different sub-matrix sizes

* We hope you invent more tricks to reduce the
number of misses !

Part (b)

» Cache:
— You get 1 kilobytes of cache
— Directly mapped (E=1)
— Block size is 32 bytes (b=5)
— There are 32 sets (s=5)
* Test Matrices:
— 32 by 32, 64 by 64, 61 by 67

The End

e Good luck!

