15213 Recitation

Caches and Style
Rohan Aletty

10/03/2011

Today’s Outline

4

L X 4

1)

4

L X 4

L)

4

o0

L)

4

o0

L)

4

.0

1)

Buflab Review
Coding Style
Caches
Cachelab

Recap

Today’s Outline

4

L X 4

1)

4

L X 4

L)

4

o0

L)

4

o0

L)

4

.0

1)

Buflab Review
Coding Style
Caches
Cachelab

Recap

Buflab

* Due tomorrow night!

Hopefully, most of you have completed the firecracker
stage by now

* Requires a pretty heavy understanding of:
x86 calling convention
stack discipline
buffer overflow

Buflab Review

* The idea of buffer overflow:
(1) Fill up the buffer with random junk
(2) Overwrite the elements past the buffer
return address, ebp, etc.

* What happens when we overwrite the return
address?

Buflab Review (2)

Suppose we have a function such that it has:

char buf[8];
strcpy(buf, userinput);

Stack structure:

Stack Content Explanation
0x90 91 04 08 Return address Next instruction in previous stack frame.
0x34 8B 68 55 Old %ebp
buf[7] buf[6] buf[5] buf[4] Last bytes of buffer Thisis a buffer that holds will hold the
buf[3] buf[2] buf[1] buf[0] First bytes of buffer first 8 characters of a user input string.

Buflab Review (3)

* Say the user gives an 8-char string with some
more stuff...

an overwrite of ebp
a pointer to the start of exploit code
the exploit code itself

* What will happen when the program runs?

Buflab Review (4)

Basic Idea:

Stack Content Explanation
exploit code Start of exploit code This address is 0x55688BA0.
exploit code The exploit code could potentially be
. something that is very harmful. Even
exploit code .
worse, you may never find out about the
exploit code exploitation and what was harmed.
OxAO 8B 68 55 Return address This returns to start of exploit code.
0x34 8B 68 55 Old %ebp
buf[7] buf[6] buf[5] buf[4] Last bytes of buffer
buf[3] buf[2] buf[1] buf[0] First bytes of buffer

Buflab Review (5)

* Make sure you guys read the writeup!

* Talks about the logistics of the lab:

how to use hex2raw

how to run bufbomb (from gdb too)
how to make your cookie

and most of your other setup questions

* If you have any other questions, come to office
hours.

Buflab Tips

Aspects to consider:
* whether ebp needs to be uncorrupted
* the endianness of the input
* where to place of cookie

* handling random stack positions (nitro)
read up on the “nop sled”

Ways to Thwart Buffer Overflow

 Stack Randomization
Vary the position of the stack on every run of the program
Causes variation in stack addresses

* Corruption Detection

Store a random “canary” value between buffer and the rest of the
stack

Check canary to see if it is corrupted before restoring register state
and returning from function

Today’s Outline

4

L X 4

1)

4

L X 4

L)

4

o0

L)

4

o0

L)

4

.0

1)

Buflab Review
Coding Style
Caches
Cachelab

Recap

Style

* We grade code style because your code needs to be
readable and explainable.

* It's good practice for when it becomes necessary in other
courses and in industry.

* Guidelines are non-exhaustive.

Documentation

* Good documentation is important

Explain tricky parts or large blocks of code
Talk about why a piece of code may not have worked

* Preface each function with a header that describes
what it does

* The idea is also not to comment every line of code

* Documentation shows us that you know what your
code does!

Code Readability

* Use whitespace well
Indent when using loops or conditional statements

* Keep each line length to under 80 characters

* Use descriptive variable names
Helps us understand the variable’s function

Code Readability (2)

* Remember to clarify magic numbers by using “#define” in the
beginning of the file

This way, you can change the #define statement instead of
changing every instance of the number in the code

Or define the magic number as a static global variable
.. Or define the magic number as an enum
... Or define the magic number as a local const variable

* Get rid of dead code (code that will not be run with the
program)
i.e. printf statements, unused variables, etc.

Failure Conditions and Error
Checking

* Don’t assume correct inputs/outputs!
* Look at and handle the wrong cases as well

i.e. malloc may return NULL, wrong number of inputs can be put
into program, the inputs themselves may not be valid

* There are many different ways to handle and resolve these
errors

Memory and File Handling

* Whenever you dynamically allocate memory
(using malloc or calloc), remember to free it at

some point
There should be no memory leaks

* If you open a file, make sure it gets closed

Consistency

* On a last and very important style note, keep
your code consistent

Don’t document some places and not others, indent at
random, use both descriptive and non-descriptive variable
names, etc.

* It is very distracting to see random style changes
when grading

Any More Issues With Style?

The style guideline is up on the course website for any further
issues with style. Again, following those guidelines will earn you
full credit.

http://www.cs.cmu.edu/~213/codeStyle.html

Today’s Outline

4

L)

» Buflab Review

1)

4

L)

* Coding Style

L)

L)

o0

» Caches (Intro to tomorrow’s lecture)
** Cachelab

L)

o0

4

* Recap

1)

Today’s Outline

*» Buflab Review

*» Coding Style

** Caches (Intro to tomorrow’s lecture)
*» Locality of reference
“* Cache Memory Organization

** Cachelab

** Recap

Locality

Locality

data we are referencing is near other recent data references or
has been recently referenced itself

Temporal Locality
A memory location that is recently accessed is likely to be
accessed again in the near future.

Spatial Locality

Nearby elements of a recently accessed memory location are
likely to accessed.

Locality (2)

Does this code exhibit good locality and why?

int sum_arrayl(int a[M][N])
{

inti, j, sum =0;
for(j=0;j<M; j++)
for(i=0;i < N;i++)

sum += al[i][jl;

return sum;

Locality (3)

Is this better? Why?

int sum_array2(int a[M][N])

{

inti, j, sum=0;
for(i=0;i < M; i++)
for(j=0;j < N; j++)

sum += al[i][jl;

return sum;

Summary of Locality

* Programs referencing the same variables have
temporal locality

* Programs with lower stride reference patterns

have good spatial locality

Stride-k means every k-th element of a contiguous vector is
referenced => if k is large, why is this bad?

The lower the stride, the better (stride-1 is the best)

Today’s Outline

*» Buflab Review
*» Coding Style
** Caches (Intro to tomorrow’s lecture)

“ Locality of reference
** Cache Memory Organization

** Cachelab

** Recap

Generic Cache Organization

* Consider a computer system having M unique
memory addresses

* A cache can be organized for the system by
having S cache sets, E cache lines per set, and B
cache blocks per line

Each cache line has its own “tag” bits to identify that line

* There will also be a valid bit that will indicate
whether or not the line is meaningful

Cache Address Structure

M = 2™ unique addresses => m address bits
S = 2% cache sets => s “set” bits

E cache lines (per set) identified through t “tag” bits
t=m-—(b+5)

B = 2° data blocks per line => b “block” bits

The total cache size (not including tag or valid bits) is:
C=S*E*B

Address bit structure: t bits s bits b bits
Address: m-1 0

Tag Set Index Block Offset

Cache Address Structure (2)

A visual diagram:

E = 2¢ lines per set
A

< ~

(set

o0 00 Iine
S =25 sets < .
.

Cache size:

ZI g | [o[z]2] B-1 C =S5 x E x B data bytes
valid bit N~——

B = 2" bytes per cache block (the data)

Cache Access

* When the CPU is instructed to read a word from an address in
memory, it sends the address to the cache

* If the cache contains a copy of the word at the address, the

word will be sent back to the CPU
Avoids going to the hard disk for the word

* The cache can tell if it has the word or not by simply
examining the address sent to it by the CPU
Like a hash table (with a simple hash function)

How The Cache Accesses

* The s set bits index into the array of S sets in the cache
First set is 0, second set is 1, etc.

* We then use the tag bits (t) in the address to let us know if the
cache line exists in the set

A line only contains the word if its tag bits are the same as the
address’s and if the valid bit is set

* Finally, we use the b block offset bits to index into the B-byte
data block and retrieve the word

Confused Yet?

* If this structure is difficult to grasp now, it will become much
clearer to you in the following lectures...

* A thorough understanding of this generic cache structure is
essential for cachelab. Make sure you understand how a
cache works before you try implementing one.

Today’s Outline

4

L X 4

1)

4

L X 4

L)

4

o0

L)

4

o0

L)

4

.0

1)

Buflab Review
Coding Style
Caches
Cachelab

Recap

Cachelab

Part 1:

You will be asked to create a cache simulator (not an actual
cache!) that will record the hits, misses, and evictions of the
cache.

Part 2:

You will be asked to write code to calculate some matrix
operations that efficiently use the cache.

Cachelab (2)

You will not have any starter code for this lab...

This is important because you will need to be able to create
programs from scratch at some point in the future

Some necessary items for doing the lab include knowledge on:
Parsing using getopt()
Creating and using a Makefile
How to open and read from a file

getopt

* getopt() automates parsing elements on the unix
command line

Typically called in a loop to retrieve arguments
Its return value is stored in a local variable
When getopt() returns -1, there are no more options

* To use getopt, your program must include the
header file unistd.h

getopt (2)

* A switch statement is used on the local variable holding the
return value from getopt()

Each command line input case can be taken care of separately

“optarg” is an important variable => it will point to the value of
the option argument

Will be useful in handling what (S,E,B) will be set to

The atoi() function will be needed here

* Also, remember to think about how to handle invalid inputs!

Maketfile

* Makefiles are handy files that spare you the burden of
recompiling many source files on the command line whenever
you want to update your program.

Always entitled Makefile
Invoked using the “make” command
Tutorial on creating one given on later slide

fopen

* The fopen() function opens an |/O stream to a file and returns
a pointer to that stream

Two parameters: filename, open type (r, w, etc.)

* In this lab, it will be useful for you to know how to open a file
a read from it using fopen()

Will be used to open trace files

* Remember to use fclose() on any files you open!

fscanf

* The fscanf() function is just like the scanf() function except it
can specify a stream to read from (scanf always reads from

stdin)
Parameters: file pointer, format string with information on how
to read file, and the rest are pointers to variables to storing data

from file
Typically want to use this function in a loop until it hits the end of

the file

* fscanf will be very useful in the lab to read from an external
file containing all the traces

Tutorials

* There are many places online that give great tutorials on what
we talked about (getopt, fscanf, Makefiles, etc.)

A few good ones are on the last slide

* If you were not already familiar with the above functions or
what a Makefile is, it would be a good idea to start this lab
early!

Today’s Outline

4

L X 4

1)

4

L X 4

L)

4

o0

L)

4

o0

L)

4

.0

1)

Buflab Review
Coding Style
Caches
Cachelab

Recap

Style
* Remember that coding style is a part of your final lab grade

* Your code needs to be functional as well as readable

* The style guideline is on the course website for a thorough
explanation of style factors

Caches

* Locality refers to the fact that data we are referencing may
have either been accessed recently (temporal) or near the
recently accessed data (spatial).

* Caches take advantage of locality

* Generic cache structure involves the cache being split up into
sets, lines, and blocks

Cachelab

* It will be given to you with no starter code

* Start early if you’re not used to creating a program from
scratch

* Remember to use getopt, a Makefile, fscanf, and fopen

Office Hours

As usual, office hours will be from 5:30 to 8:30 PM from Sunday
through Thursday at Wean 5207.

Good luck on cachelab!

Tutorials

* Makefile:
* http://mrbook.org/tutorials/make/

* getopt:
* http://www.gnu.org/s/hello/manual/libc/Getopt.html#Getopt

* fscanf/fopen:
* http://www.crasseux.com/books/ctutorial/fscanf.html

* http://www.gnu.org/s/hello/manual/libc/Opening-Streams.html

