
Assembly, Stacks, and Registers
Kevin C. Su
9/26/2011

 BombLab

 Assembly review

 Stacks
◦ EBP / ESP

 Stack Discipline

 Buffer Overflow

 BufLab

 Summary

 Hopefully everyone has started by now

 If there are any questions/if you need help,
◦ Email the staff list: 15-213-staff@cs.cmu.edu

◦ Office hours: Sun-Thurs 5:30 to 8:30

 Due tomorrow at midnight.

 BombLab

 Assembly Review

 Stacks
◦ EBP / ESP

 Stack Discipline

 Buffer Overflow

 BufLab

 Summary

 Instructions
◦ mov

◦ add/sub/or/and/…

◦ leal

◦ test/cmp

◦ jmp/je/jg/…

 Differences between
◦ test / and

◦ mov / leal

 x86
◦ 6 General Purpose Registers

◦ EBP / ESP

 x86-64
◦ 14 General Purpose Registers

◦ RBP / RSP

◦ Difference between RAX and EAX

 x86
◦ Argument 1: %ebp+8

◦ Argument 2: %ebp+12

◦ …

 x86-64
◦ Argument 1: %rdi

◦ Argument 2: %rdx

◦ …

 Assembly

 Stacks
◦ EBP / ESP

 Stack Discipline

 Buffer Overflow

 BufLab

 Summary

 Vital role in handling procedure calls

 Similar to “Stack” data structure

 FILO

 %esp => points to the top of the stack

 %ebp => points to the base of the stack

 Example stack
◦ foo calls:

 bar(argument 1)

 PUSH – pushes an element onto the stack

 POP – pops an element off of the stack

 Stack layout for a

 function call

 Function Parameters
◦ Pushed on by the calling function

 First parameter starts at %EBP + 8
◦ Why?

 Calling foo(x, y, z)
◦ In what order do we push the arguments on the

stack and why?

 Return address
◦ What is it’s address in terms of %EBP?

 For the called function to return

 (This will be a target for buflab)

 Saved %EBP
◦ Positioned above the last stack frame

 Remember,
◦ %ESP = %EBP

◦ %EBP = popped old %EBP

◦ Pop the return address

 %EBP and %ESP are back to their old values

 Next is space for all local variables
◦ What happens to them after the function is over?

 This is where the buffer overflow will occur

 Callee may also have to save registers

 BombLab

 Assembly Review

 Stacks
◦ EBP / ESP

 Stack Discipline

 Buffer Overflow

 BufLab

 Summary

 %ebp
◦ Where does it point?

◦ What happens during a function call?

 %esp
◦ Where does it point?

◦ What happens during a function call?

 Order of objects on the stack
◦ Argument 2

◦ Argument 1

◦ Return Address

◦ Saved %ebp

◦ Local variables for called function

 Grows downwards!

 Calling a function
◦ Push arguments

◦ Push return address

◦ Jump to new function

◦ Save old %ebp on stack

◦ Subtract from stack pointer to make space

 Returning
◦ Pop the old %ebp

◦ Pop the return address and return to it

 Think eip = stack.pop()

 Useful things
◦ Return address

 %ebp + 4

◦ Old %ebp

 %ebp

◦ Argument 1

 %ebp + 8

◦ Argument 2

 %ebp + 12

 BombLab

 Assembly Review

 Stacks
◦ EBP / ESP

 Buffer Overflow

 BufLab

 Summary

 Covered in lecture tomorrow
◦ Make sure to pay attention!

 Seminal Paper
◦ Smashing the Stack for Fun and Profit

 A method of gaining control over a program

 Actual exploitation
◦ Server is running a program
◦ Buffer Overflow vulnerability
◦ Take control of program => Take control of server

 Calling the function foo(1, 2)
◦ Note how the stack is set up (useful for BufLab)

0x00 00 00 02 Argument 2

0x00 00 00 01 Argument 1

0x08 06 5A AD Return Address

0xFF FF FF C8 Old %EBP

BUF[11] BUF[10] BUF[9] BUF[8] Last 4 bytes of BUF

BUF[7] BUF[6] BUF[5] BUF[4] Middle 4 bytes of BUF

BUF[3] BUF[2] BUF[1] BUF[0] First 4 bytes of BUF

…

 strcpy(BUF, userInput) //char BUF[12]

 Let user input =
0x1234567890ABCDEFDEADBEEEF

 0x00 00 00 02 Argument 2

0x00 00 00 01 Argument 1

0x08 06 5A AD Return Address

0xFF FF FF C8 Old %EBP

BUF[11] BUF[10] BUF[9] BUF[8] Last 4 bytes of BUF

BUF[7] BUF[6] BUF[5] BUF[4] Middle 4 bytes of BUF

BUF[3] BUF[2] BUF[1] BUF[0] First 4 bytes of BUF

…

 Let user input =
0x1234567890ABCDEFDEADBEEEF

 First 4 copied in (What’s the endianness?)

 0x00 00 00 02 Argument 2

0x00 00 00 01 Argument 1

0x08 06 5A AD Return Address

0xFF FF FF C8 Old %EBP

BUF[11] BUF[10] BUF[9] BUF[8] Last 4 bytes of BUF

BUF[7] BUF[6] BUF[5] BUF[4] Middle 4 bytes of BUF

0x78 56 34 12 First 4 bytes of BUF

…

 Let user input =
0x1234567890ABCDEFDEADBEEEF

 Next 4

 0x00 00 00 02 Argument 2

0x00 00 00 01 Argument 1

0x08 06 5A AD Return Address

0xFF FF FF C8 Old %EBP

BUF[11] BUF[10] BUF[9] BUF[8] Last 4 bytes of BUF

0xEF CD AB 90 Middle 4 bytes of BUF

0x78 56 34 12 First 4 bytes of BUF

…

 Let user input =
0x1234567890ABCDEFDEADBEEF

 Last 4 available bytes

 0x00 00 00 02 Argument 2

0x00 00 00 01 Argument 1

0x08 06 5A AD Return Address

0xFF FF FF C8 Old %EBP

0xEF BE AD DE Last 4 bytes of BUF

0xEF CD AB 90 Middle 4 bytes of BUF

0x78 56 34 12 First 4 bytes of BUF

…

 Let user input =
0x1234567890ABCDEFDEADBEEF

 What if the user entered in 8 more bytes?

 0x00 00 00 02 Argument 2

0x00 00 00 01 Argument 1

0x08 06 5A AD Return Address

0xFF FF FF C8 Old %EBP

0xEF BE AD DE Last 4 bytes of BUF

0xEF CD AB 90 Middle 4 bytes of BUF

0x78 56 34 12 First 4 bytes of BUF

…

 Let user input =
0x1234567890ABCDEFDEADBEEF

 Concatenate 0x1122334455667788

 0x00 00 00 02 Argument 2

0x00 00 00 01 Argument 1

0x08 06 5A AD Return Address

0x44 33 22 11 Old %EBP

0xEF BE AD DE Last 4 bytes of BUF

0xEF CD AB 90 Middle 4 bytes of BUF

0x78 56 34 12 First 4 bytes of BUF

…

 Let user input =
0x1234567890ABCDEFDEADBEEF

 Concatenate 0x1122334455667788

 0x00 00 00 02 Argument 2

0x00 00 00 01 Argument 1

0x88 77 66 55 Return Address

0x44 33 22 11 Old %EBP

0xEF BE AD DE Last 4 bytes of BUF

0xEF CD AB 90 Middle 4 bytes of BUF

0x78 56 34 12 First 4 bytes of BUF

…

 Oh no! We’ve overwritten the return address

 What happens when the function returns?

0x00 00 00 02 Argument 2

0x00 00 00 01 Argument 1

0x88 77 66 55 Return Address

0x44 33 22 11 Old %EBP

0xEF BE AD DE Last 4 bytes of BUF

0xEF CD AB 90 Middle 4 bytes of BUF

0x78 56 34 12 First 4 bytes of BUF

…

 Function will return to 0x55667788
◦ Controlled by user

0x00 00 00 02 Argument 2

0x00 00 00 01 Argument 1

0x88 77 66 55 Return Address

0x44 33 22 11 Old %EBP

0xEF BE AD DE Last 4 bytes of BUF

0xEF CD AB 90 Middle 4 bytes of BUF

0x78 56 34 12 First 4 bytes of BUF

…

 Instead of entering garbage, we could’ve
entered arbitrary code. Then we’d have
control of the program.

 0x00 00 00 02 Argument 2

0x00 00 00 01 Argument 1

0x88 77 66 55 Return Address

0x44 33 22 11 Old %EBP

0xEF BE AD DE Last 4 bytes of BUF

0xEF CD AB 90 Middle 4 bytes of BUF

0x78 56 34 12 First 4 bytes of BUF

…

 BombLab

 Assembly Review

 Stacks
◦ EBP / ESP

 Buffer Overflow

 BufLab

 Summary

 Buffer Overflows are the premise of BufLab

 You will inject code, then make the program
execute your code

 You can use this to branch to other existing
functions, set arbitrary values in variables, or
execute anything you want!

 BombLab

 Assembly Review

 Stacks
◦ EBP / ESP

 Buffer Overflow

 BufLab

 Summary

 Purpose of %ebp

 Purpose of %esp

 Essential for function calls

 3 important things stored on stack:
◦ Arguments

◦ Return address

◦ Old %EBP

 Which would be a target for BufLab?

 Unbounded string copy

 Allow a user to overwrite any part of the stack

 Can execute arbitrary code
◦ Set variables

◦ Call functions

◦ Shellcode too

 Pick up your datalabs.

 Style grading:
◦ Comments

◦ Clear code, broken into logical pieces

◦ Meaningful variable names

 If you haven’t corrected your recitation in
autolab, please do it after this class.

 Questions?

 Good luck on BufLab (out tomorrow).

