
Threading

15-213/18-213: Introduction to Computer Systems

14th Recitation, Nov 28, 2011

Adrian Trejo Nuñez (atrejo)

PH 125C 3:30p-4:30p

Today

● Threads
● Thread safety
● Proxy

Reminder

● Proxylab is due on 11:59p, Sunday Dec 4
● Sign for your partner on Autolab if you haven't

already.

Threads

● What is a thread?
● Registers
● Stack
● Stack pointer
● Program counter

● Then a process is just a thread along with code,
data, and kernel context

● Processes can have more than one thread though

Why Use Threads?

● Concurrency
● Easy sharing of data structures and variables
● Cheaper than processes

● Roughly half as many CPU cycles needed

POSIX Threads Interface

● Creating and reaping threads
● pthread_create
● pthread_join

● Determining your thread ID
● pthread_self

● Terminating threads
● pthread_exit
● exit (kills all threads associated with process)
● return (kills current thread)

Multi-threaded Program
#include “csapp.h”

void *thread(void *vargp);

int main(void) {
 pthread_t tid;
 int i;
 for (i = 0; i < 42; ++i) {
 pthread_create(&tid, NULL, thread, NULL);
 pthread_join(tid, NULL);
 }
 return 0;

}

void *thread(void *vargp) {
 puts(“Hello world!”);
 return NULL;
}

Joinable vs. Detached

● Joinable threads need to be reaped by other
threads to free up memory resources

● pthread_join

● Detached threads are automatically reaped
when they terminate

● pthread_detach(tid)
● pthread_detach(pthread_self())

● Default state is joinable

Thread Safety

● Each thread has its own logical control flow, but
not its own set of data like a process

● If we want to use threads to write concurrent
programs, we will need to be careful with our
data

Race Conditions

● Occur when your correctness depends on one
thread reaching point x in its control flow before
another thread reaches point y

● Global variables
● Threads dependent on conditions

Race Condition

● global++;
● Think of as:

1. Load value of global into register
2. Add one to register
3. Store new value in address of global

● We don't want threads to interweave
● 1-2-3-1-2-3

● But they might...
● 1-2-1-2-3-3

Safety

● Need to synchronize threads so that any critical
region has at most one thread in it

● Use semaphores for this synchronization

Semaphores

● Non-negative global integer synchronization
variable

● Can do two operations on it
● P(s) → while (s == 0) wait(); s--;
● V(s) → s++;

● Only one P or V operation can modify s
● When while loop in P terminates, only that P can

decrement s

POSIX Semaphore Interface

● Creating and destroying a semaphore
● sem_init
● sem_destroy

● Modifying a semaphore's value
● sem_wait // P
● sem_post // V

Safe Multi-threading
#include “csapp.h”

static volatile int global = 0;
static sem_t mutex;

int main(void) {
 pthread_t tid1, tid2;
 sem_init(&mutex, 0, 1);
 pthread_create(&tid1, NULL, thread, NULL);
 pthread_create(&tid2, NULL, thread, NULL);
 pthread_join(tid1, NULL);
 pthread_join(tid2, NULL);
 if (global == 10000)
 return 0;
 return -1;
}

void *thread(void *vargp) {
 int i;
 for (i = 0; i < 5000; ++i) {
 sem_wait(&mutex);
 global++;
 sem_post(&mutex);
 }
 return NULL;
}

Proxy

● Your proxy needs to handle concurrent requests
● Writeup suggests to spawn thread for every

request
● All of those threads will try to access and modify

your proxy's cache
● Make sure you have no race conditions!

● Can also use pthread_mutex_t instead of sem_t

	Threading
	Today
	Reminder
	Threads
	Why Use Threads?
	POSIX Threads Interface
	Multi-threaded Program
	Joinable vs. Detached
	Thread Safety
	Race Conditions
	Race Condition
	Safety
	Semaphores
	POSIX Semaphore Interface
	Safe Multi-threading
	Proxy

