
Recitation Nov 21

Malloclab summary, testing,
tools for proxylab

Topics

● Summary of malloclab
● The importance of testing
● Tools for proxylab

○ telnet
○ netcat
○ diff
○ thttp
○ tiny
○ wireshark

Malloclab

● Questions, comments about malloclab?
● Lessons learned?
● Many students tried to implement first, then debug

○ Start with simplest implementation
○ Make small changes, and test every change
○ If something breaks, you know what caused it

● Think about this process in design
○ E.g. "how can I design my explicit list so that I can easily

transition to seglists?"

Topics

● Summary of malloclab
● The importance of testing
● Tools for proxylab

○ telnet
○ netcat
○ diff
○ thttp
○ tiny
○ wireshark

Testing in proxylab

● We provide no tests for proxylab
○ Designing tests is a critical part of designing a program

● Two major types of tests
○ Unit tests - test small parts of program
○ System tests - test operation of whole program

● Both types of tests are important

● A good test suite can make or break a real program
● Sometimes the bulk of the code is tests!

"SQLite is a test suite that ships
with an embedded database"

Unit tests

● Test smallest possible "units" of code
○ E.g. "does this function do what it's supposed to"

● Test interaction between small groups of functions
○ Technically integration testing

● �Usually written with a testing framework library
○ Automates setup, teardown, and reporting
○ You may want to use one of these

Writing tests

1. Determine what test cases to test, and correct output
○ May be known cases, e.g. "if I input X, it should output

Y"
○ May be alternative implementation
○ Can use random cases + two implementations

2. Write test function
○ Compares actual output to desired output
○ Logs results

3. Write code to run all tests automatically

Example: divpwr2 from datalab

Unit test example - bad divpwr2

/*
 * divpwr2 - Compute x/(2^n), for 0 <= n <= 30
 * Round toward zero
 * Examples: divpwr2(15,1) = 7,
 * divpwr2(-33,4) = -2
 * Legal ops: ! ~ & ^ | + << >>
 * Max ops: 15
 * Rating: 2
 */
int32_t divpwr2(int32_t x, int32_t n)
{
 return x >> n;
}

Unit test example - alternative
implementation
int32_t divpwr2_easy(int32_t x, int32_t n)
{
 assert(n>=0 and n<=30);
 while (n > 0) {
x /= 2;
 n --;
 }
 return x;
}

Unit test example - testing function

void test_divpwr2_impl(int32_t x, int32_t n)
{
 int a, b;
 a = divpwr2(x, n);
 b = divpwr2_easy(x, n);
 if (a != b) {
printf("divpwr2 failed test %i %i\n",
 x, n);
printf("\treturned %i, should be %i\n",
 a, b);
 }
}

Unit test example - output

$./unittest
divpwr2 failed test -1 1
returned -1, should be 0
divpwr2 failed test -3 1
returned -2, should be -1

It's failing on odd negative numbers!

Testing notes

● All code may have bugs in it ... including the tests
○ When a test fails, it could be the program code, or the

test code
● Develop tests incrementally as well

○ Start with common case, expected corner cases
■ E.g. negative numbers, 0, 1
■ NULL, "", over-length string, non-terminated string

○ When you discover a bug, make a test!
● Make sure that you can run all tests automatically

○ Simple tests can be hand-coded like example
○ For complicated tests use a testing framework

Topics

● Summary of malloclab
● The importance of testing
● Tools for proxylab

○ telnet
○ netcat
○ diff
○ thttp
○ tiny
○ wireshark

Tools for proxylab

● telnet - simple text-based network connection
● netcat (nc) - "network swiss army knife"
● diff - compare two text files
● thttpd - simple http server
● tiny - another simple http server
● wireshark/tshark - watch network traffic

Telnet

telnet <host> [port]

● Creates simple, plain-text network connections
● Anything you type is sent over wire
● Anything received is printed to screen

Telnet example - http get request

$ telnet www.google.com 80
Trying 72.14.204.99...
Connected to www.l.google.com.
Escape character is '^]'.
GET / HTTP/1.1

HTTP/1.1 200 OK
Date: Sun, 20 Nov 2011 21:22:49 GMT
Expires: -1
Cache-Control: private, max-age=0
Content-Type: text/html; charset=ISO-8859-1
Set-Cookie:
...

Netcat

nc <host> <port>
● Like telnet, opens plain-text connection
● Doesn't print any "cruft"

nc -l <port> [-k]
● Starts a server (listen) on given port
● -k: keep server open after client disconnect

● Netcat has many more options, "man nc"
● There are multiple versions with slight differences

○ Consult your man page if any of this doesn't work
● Try starting server in one window, connect to it from another

○ Anything you type should be mirrored between the two

thttpd

thttpd -p <port> -D

● Serves local directory over http (many more options)
● -D keeps it as a foreground process
● Example thttpd and netcat:

● First window:
$ thttpd -p 17171 -D

Second window:
$ nc localhost 17171
GET /thttpd.log HTTP/1.0

HTTP/1.0 200 OK
Server: thttpd/2.25b 29dec2003
Content-Type: text/plain; charset=iso-8859-1
...

tiny - Dave O's tiny http server

● Similar to thttpd
● Source is even tinier

○ May be easier to understand and modify

Wireshark, tshark, tcpdump - packet
sniffing

● Gathers all data seen by ethernet
● Can be used to sanity check your program

○ Does the data "over the wire" match what you think
you're sending?

● Wireshark is a GUI program
○ Command-line version is tshark

● tcpdump gets data from tcp connections
○ "man tcpdump" has example of sniffing http connections

tcpdump example

$ sudo tcpdump tcp port 17171 -i lo -A
...
GET /hello.txt HTTP/1.0
...
HTTP/1.0 200 OK
Server: thttpd/2.25b 29dec2003
Content-Type: text/plain; charset=iso-8859-1
Date: Mon, 21 Nov 2011 03:14:13 GMT
Last-Modified: Sun, 20 Nov 2011 21:35:39 GMT
Accept-Ranges: bytes
Connection: close
Content-Length: 13

Hello World!

A few extra things about proxylab

● Revision control (e.g. git)
○ Now that you're working with a partner this is important!

● Get started early on proxylab
● High-level design is a big part of this project

○ Even more so than malloclab

