Carnegie Mellon

Debugging and Version control

15-213 / 18-213: Introduction to Computer Systems
12th Recitation, Nov. 14, 2011

Slides by: Lin Xiao(lxiao)

Carnegie Mellon

Today

m Debugging with GDB and core file
m Attach GDB to running process

m Heap consistency checking in glibc
m Version control with Git

Carnegie Mellon

Debug with core dump file

m Compile your program with option —g
= -gprovides debugging information that gdb can use

m Incsh:

" unlimit coredumpsize

m Core dump: contains state of the process when it crashes

m E.g. if a program compiled with -g option gets segfault, it
generates a core dump file

Carnegie Mellon

Example code : faulty.c

#include <stdio.h>
#include <stdlib.h>

int main(int argc, char **argv)
{
char * buf;
buf = NULL; //obvious and silly mistake
fgets(buf, 1024, stdin);
printf("%s\n", buf);
return O;

Carnegie Mellon

Compile and run the program

S gcc —Wall —g —o faulty faulty.c

S./faulty
1
Segmentation fault (core dumped)

m A core dump file called core.31747/core is generated
m Use gdb to debug the program with the core file
m Then you can examine the state when process crashes

Carnegie Mellon

Use gdb with a core file

S gdb faulty core.31747

GNU gdb Fedora (6.8-29.fc10)

Core was generated by "./faulty'.

Program terminated with signal 11, Segmentation fault.

[New process 31747]

#0 0x000000327f869a0e in 10 getline_info_internal () from /lib64/libc.so.6
Missing separate debuginfos, use: debuginfo-install glibc-2.9-2.x86_64

(gdb) bt

#0 0x000000327f869a0e in 10 getline_info_internal () from /lib64/libc.so.6
#1 0x000000327f8687a7 in fgets () from /lib64/libc.so.6

#2 0x0000000000400578 in main (argc=1, argv=0x7fffaf3c1998) at fault.c:8

(gdb)

Carnegie Mellon

Today

m Debugging with GDB core file

m Attach GDB to running process

m Heap consistency checking in glibc
m Version control with Git

Carnegie Mellon

Attaching to a running process

m Process gets stuck (infinite loop)
m Look at status for long running program

m gdb program process-id
m ingdb
= (gdb) attach process-id

m How to find process-id
= |f the process starts in background, the process id is printed
= Use “ps aux | grep program”
" man ps

Carnegie Mellon

Today

m Debugging with GDB core file

m Attach GDB to running process

m Heap consistency checking in glibc
m Version control with Git

Carnegie Mellon

Heap consistency checking in glibc

m Ask malloc to check the heap consistency by using mcheck
m GNU extension, declared in malloc.h

m int mcheck (void (*abortfn) (enum mcheck_status status))
= Call abortfn when inconsistency is found

m Or set the environment variable MALLOC_CHECK _

m Check and guard against bugs when using malloc,realloc,
free

m If MALLOC_CHECK is set, a special (less efficient)
implementation is used to tolerate simple errors

10

Carnegie Mellon

Today

m Debugging with GDB with core file
m Attach GDB to running process

m Heap consistency checking in glibc
m Version control with Git

1"

Carnegie Mellon

Version control

m Track and control changes to a project’s files
= Keep multiple versions
= Labels/Comments help to identify changes

m Commonly used for team collaboration

m Version control systems:

= CVS, SVN, etc...
= We’'ll demonstrate how to use Git today

12

Carnegie Mellon

Git overview

m Developed by Linux kernel creator Linus Torvalds

m A distributed versioning file system
= We only use it with local repository in the recitation

m Installed in shark machines
m “git” lists most commonly used git commands

13

Carnegie Mellon

Create your repository

m Creating a new repository
= gijtinit : Create an empty git repository in current direcotry
= git init malloclab-handout: specify the directory

m Directory .git is created and stores the whole repository
content

m working tree: project files in the repository
m index: snapshot for your project files

14

Carnegie Mellon

Add changes

m Add changes to stage area before commit
m gitadd.

= Add files in the current directory

m git add mm.c
= Even if mm.c is under version control

m Different from other version control systems: once the file
is in version control, you don’t need to add it again)

15

Carnegie Mellon

Commit

m Commit your changes
m git commit —-m “my first commit”
m Each commit is assigned a SHA-1 hash

m If only mm.cis changed, you can commit the change by:
m gitadd mm.c
m git commit -m “Implement implicit lists”

m git commit mm.c -m “Implement implicit lists”

m git commit -a-m “Implement implicit lists”

16

Withdraw changes:

m If you haven’t added mm.c to index yet:
= git checkout mm.c

m If mm.cis added to index but not committed yet:

= git reset HEAD mm.c
= git checkout mm.c

17

Carnegie Mellon

Other commands

m git status: Show the working tree status
= # Changes to be committed:
= # Changed but not updated:
= # Untracked files:

m gitlog : Show commit logs
m gittag

m git branch
m gitrevert

18

Carnegie Mellon

Git references

m Git cheat sheets
m Git Tutorial
m git magic

19

