Introduction to Computer Systems
15-213/18-243, fall 2009
3rd Lecture, Sep. 1st

Instructors:
Roger B. Dannenberg and Greg Ganger
Last Time: Integers

- Representation: unsigned and signed
- Conversion, casting
 - Bit representation maintained but reinterpreted
- Expanding, truncating
 - Truncating = mod
- Addition, negation, multiplication, shifting
 - Operations are mod 2^w
- Ordering properties do not hold
 - $u > 0$ does not mean $u + v > v$
 - $u, v > 0$ does not mean $u \cdot v > 0$
Today: Floating Point

- Background: Fractional binary numbers
- IEEE floating point standard: Definition
- Example and properties
- Rounding, addition, multiplication
- Floating point in C
- Summary
Fractional binary numbers

- What is 1023.405_{10}?

- What is 1011.101_2?
Fractional Binary Numbers

- Representation
 - Bits to right of “binary point” represent fractional powers of 2
 - Represents rational number: \[\sum_{k=-j}^{i} b_k \cdot 2^k \]
Fractional Binary Numbers: Examples

<table>
<thead>
<tr>
<th>Value</th>
<th>Representation</th>
</tr>
</thead>
<tbody>
<tr>
<td>$5\frac{3}{4}$</td>
<td>101.11_2</td>
</tr>
<tr>
<td>$2\frac{7}{8}$</td>
<td>10.111_2</td>
</tr>
<tr>
<td>$63/64$</td>
<td>0.111111_2</td>
</tr>
</tbody>
</table>

Observations
- Divide by 2 by shifting right
- Multiply by 2 by shifting left
- Compare to shifting decimal numbers right or left
- Numbers of form $0.111111\ldots_2$ are just below 1.0
 - $1/2 + 1/4 + 1/8 + \ldots + 1/2^i + \ldots \rightarrow 1.0$
 - Compare to $0.9999\ldots_{10} \rightarrow 1.0$
 - Use notation $1.0 - \varepsilon$
Representable Numbers

- **Limitation**
 - Can only exactly represent numbers of the form \(x/2^k \)
 - Other rational numbers have repeating bit representations

- **Value**
 - **Representation**
 - \(1/3 \)
 - \(0.0101010101[01]_{2} \ldots \)
 - \(1/5 \)
 - \(0.001100110011[0011]_{2} \ldots \)
 - \(1/10 \)
 - \(0.0001100110011[0011]_{2} \ldots \)

- **Observation**
 - \(0.1_{10} \) has no finite exact binary representation!
Today: Floating Point

- Background: Fractional binary numbers
- **IEEE floating point standard:** Definition
- Example and properties
- Rounding, addition, multiplication
- Floating point in C
- Summary
IEEE Floating Point

- **IEEE Standard 754**
 - Established in 1985 as uniform standard for floating point arithmetic
 - Before that, many idiosyncratic formats
 - Supported by all major CPUs

- **Driven by numerical concerns**
 - Nice standards for rounding, overflow, underflow
 - Hard to make fast in hardware
 - Numerical analysts predominated over hardware designers in defining standard
Floating Point Representation

- **Numerical Form:**
 \[(–1)^s \ M \ 2^E \]
 - **Sign bit** \(s \) determines whether number is negative or positive
 - **Significand** \(M \) normally a fractional value in range [1.0, 2.0).
 - **Exponent** \(E \) weights value by power of two

- **Encoding**
 - MSB \(s \) is sign bit \(s \)
 - **exp** field encodes \(E \) (but is not equal to \(E \))
 - **frac** field encodes \(M \) (but is not equal to \(M \))

| \(s \) | exp | frac |
Precisions

- **Single precision:** 32 bits

 - **Format:** `s exp frac`
 - **Bits:**
 - Sign: 1
 - Exponent: 8
 - Fraction: 23

- **Double precision:** 64 bits

 - **Format:** `s exp frac`
 - **Bits:**
 - Sign: 1
 - Exponent: 11
 - Fraction: 52

- **Extended precision:** 80 bits (Intel only)

 - **Format:** `s exp frac`
 - **Bits:**
 - Sign: 1
 - Exponent: 15
 - Fraction: 63 or 64
Normalized Values

- **Condition:** \(\text{exp} \neq 000...0 \) and \(\text{exp} \neq 111...1 \)

- **Exponent coded as biased value:** \(E = \text{Exp} - \text{Bias} \)
 - \(\text{Exp} \): unsigned value \(\text{exp} \)
 - \(\text{Bias} = 2^{e-1} - 1 \), where \(e \) is number of exponent bits
 - Single precision: 127 (\(\text{Exp} \): 1...254, \(E \): -126...127)
 - Double precision: 1023 (\(\text{Exp} \): 1...2046, \(E \): -1022...1023)

- **Significand coded with implied leading 1:** \(M = 1 . \text{xxx}...\text{x}_2 \)
 - \(\text{xxx}...\text{x} \): bits of \(\text{frac} \)
 - Minimum when \(000...0 \) (\(M = 1.0 \))
 - Maximum when \(111...1 \) (\(M = 2.0 - \varepsilon \))
 - Why does \(M \) range from 1 to 2-? Why not 0 to 1-?
 - Get extra leading bit for “free”
Normalized Encoding Example

- **Value:** Float $F = 15213.0;$
 - $15213_{10} = 11101101101101_{2}$
 - $= 1.1101101101101_{2} \times 2^{13}$

- **Significand**
 - $M = 1.1101101101101_{2}$
 - $frac = 1101101101101000000000000_{2}$

- **Exponent**
 - $E = 13$
 - $Bias = 127$
 - $Exp = 140 = 10001100_{2}$

- **Result:**
 - $s \quad exp \quad frac$
 - $0 \quad 10001100 \quad 1101101101101000000000000$
Denormalized Values

- **Condition:** $\exp = 000...0$

- **Exponent value:** $E = 1 - \text{Bias}$ (instead of $E = 0 - \text{Bias}$)

- **Significand coded with implied leading 0:** $M = 0.\ xxx...x_2$
 - $xxx...x$: bits of frac

- **Cases**
 - $\exp = 000...0$, $\text{frac} = 000...0$
 - Represents value 0
 - Note distinct values: +0 and –0 (why?)
 - $\exp = 000...0$, $\text{frac} \neq 000...0$
 - Numbers very close to 0.0
 - Lose precision as get smaller
 - Equispaced
Special Values

- **Condition**: $\exp = 111...1$

- **Case**: $\exp = 111...1, \frac{\text{frac}}{\text{frac}} = 000...0$
 - Represents value ∞ (infinity)
 - Operation that overflows
 - Both positive and negative
 - E.g., $1.0/0.0 = -1.0/-0.0 = +\infty$, $1.0/-0.0 = -\infty$

- **Case**: $\exp = 111...1, \frac{\text{frac}}{\text{frac}} \neq 000...0$
 - Not-a-Number (NaN)
 - Represents case when no numeric value can be determined
 - E.g., $\sqrt{-1}$, $\infty - \infty$, $\infty \times 0$
Visualization: Floating Point Encodings

-∞ -∞ -Denorm +Denorm +Normalized +∞

-Normalized

NaN NaN

-0 +0
Today: Floating Point

- Background: Fractional binary numbers
- IEEE floating point standard: Definition
- Example and properties
- Rounding, addition, multiplication
- Floating point in C
- Summary
Tiny Floating Point Example

![Tiny Floating Point Format Diagram](image)

- **8-bit Floating Point Representation**
 - the sign bit is in the most significant bit.
 - the next four bits are the exponent, with a bias of 7.
 - the last three bits are the frac

- **Same general form as IEEE Format**
 - normalized, denormalized
 - representation of 0, NaN, infinity
Is 8-bit Float Just an Example?

- **uLaw Audio Representation**
 - An 8-bit float used for digital telephony in North America/Japan

- We'll hear some examples later

- Small floats also used in GPUs!
Dynamic Range (Positive Only)

<table>
<thead>
<tr>
<th></th>
<th>exp</th>
<th>frac</th>
<th>E</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Denormalized numbers</td>
<td>0 0000 000</td>
<td>-6</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>0 0000 001</td>
<td>-6</td>
<td>$1/8 \times 1/64 = 1/512$</td>
<td>closest to zero</td>
</tr>
<tr>
<td></td>
<td>0 0000 010</td>
<td>-6</td>
<td>$2/8 \times 1/64 = 2/512$</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0 0000 110</td>
<td>-6</td>
<td>$6/8 \times 1/64 = 6/512$</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0 0000 111</td>
<td>-6</td>
<td>$7/8 \times 1/64 = 7/512$</td>
<td>largest denorm</td>
</tr>
<tr>
<td></td>
<td>0 0001 000</td>
<td>-6</td>
<td>$8/8 \times 1/64 = 8/512$</td>
<td>smallest norm</td>
</tr>
<tr>
<td></td>
<td>0 0001 001</td>
<td>-6</td>
<td>$9/8 \times 1/64 = 9/512$</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0 0110 110</td>
<td>-1</td>
<td>$14/8 \times 1/2 = 14/16$</td>
<td>closest to 1 below</td>
</tr>
<tr>
<td></td>
<td>0 0110 111</td>
<td>-1</td>
<td>$15/8 \times 1/2 = 15/16$</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0 0111 000</td>
<td>0</td>
<td>$8/8 \times 1 = 1$</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0 0111 001</td>
<td>0</td>
<td>$9/8 \times 1 = 9/8$</td>
<td>closest to 1 above</td>
</tr>
<tr>
<td></td>
<td>0 0111 010</td>
<td>0</td>
<td>$10/8 \times 1 = 10/8$</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0 1110 110</td>
<td>7</td>
<td>$14/8 \times 128 = 224$</td>
<td>largest norm</td>
</tr>
<tr>
<td></td>
<td>0 1110 111</td>
<td>7</td>
<td>$15/8 \times 128 = 240$</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0 1111 000</td>
<td>n/a</td>
<td>inf</td>
<td></td>
</tr>
</tbody>
</table>
Distribution of Values

- 6-bit IEEE-like format
 - $e = 3$ exponent bits
 - $f = 2$ fraction bits
 - Bias is $2^{3-1} - 1 = 3$

- Notice how the distribution gets denser toward zero.
Distribution of Values (close-up view)

- **6-bit IEEE-like format**
 - $e = 3$ exponent bits
 - $f = 2$ fraction bits
 - Bias is 3

![Diagram of distribution of values with 6-bit IEEE-like format]
Sound Examples

- Floats are more precise near zero

- Fixed-point numbers quantize uniformly throughout their range
Interesting Numbers

<table>
<thead>
<tr>
<th>Description</th>
<th>exp</th>
<th>frac</th>
<th>Numeric Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zero</td>
<td>00...00</td>
<td>00...00</td>
<td>0.0</td>
</tr>
<tr>
<td>Smallest Pos. Denorm.</td>
<td>00...00</td>
<td>00...01</td>
<td>$2^{-{23,52}} \times 2^{-{126,1022}}$</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>$(1.0 - \varepsilon) \times 2^{-{126,1022}}$</td>
</tr>
<tr>
<td>Largest Denormalized</td>
<td>00...00</td>
<td>11...11</td>
<td>$00...00 \ 1.0 \times 2^{-{126,1022}}$</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>$(2.0 - \varepsilon) \times 2^{{127,1023}}$</td>
</tr>
<tr>
<td>Smallest Pos. Normalized</td>
<td>00...01</td>
<td></td>
<td></td>
</tr>
<tr>
<td>One</td>
<td>01...11</td>
<td>00...00</td>
<td>1.0</td>
</tr>
<tr>
<td>Largest Normalized</td>
<td>11...10</td>
<td>11...11</td>
<td></td>
</tr>
</tbody>
</table>
Special Properties of Encoding

- **FP Zero Same as Integer Zero**
 - All bits = 0

- **Can (Almost) Use Unsigned Integer Comparison**
 - Must first compare sign bits
 - Must consider -0 = 0
 - NaNs problematic
 - Will be greater than any other values
 - What should comparison yield?
 - Otherwise OK
 - Denorm vs. normalized
 - Normalized vs. infinity
Today: Floating Point

- Background: Fractional binary numbers
- IEEE floating point standard: Definition
- Example and properties
- Rounding, addition, multiplication
- Floating point in C
- Summary
Floating Point Operations: Basic Idea

- $x +_f y = \text{Round} (x + y)$

- $x \times_f y = \text{Round} (x \times y)$

Basic idea

- First compute exact result
- Make it fit into desired precision
 - Possibly overflow if exponent too large
 - Possibly round to fit into frac
Rounding

- Rounding Modes (illustrate with $ rounding)

- Towards zero
 - $1.40: $1
 - $1.60: $1
 - $1.50: $1
 - $2.50: $2
 - $1.50: $2

- Round down ($-\infty$)
 - $1.40: $1
 - $1.60: $1
 - $1.50: $1
 - $2.50: $2
 - $1.50: $2

- Round up ($+\infty$)
 - $1.40: $2
 - $1.60: $2
 - $1.50: $2
 - $2.50: $3
 - $1.50: $3

- Nearest Even (default)
 - $1.40: $1
 - $1.60: $2
 - $1.50: $2
 - $2.50: $2
 - $1.50: $2

- What are the advantages of the modes?
Closer Look at Round-To-Even

- Default Rounding Mode
 - Hard to get any other kind without dropping into assembly
 - All others are statistically biased
 - Sum of set of positive numbers will consistently be over- or under-estimated

- Applying to Other Decimal Places / Bit Positions
 - When exactly halfway between two possible values
 - Round so that least significant digit is even
 - E.g., round to nearest hundredth
 - 1.2349999 1.23 (Less than half way)
 - 1.2350001 1.24 (Greater than half way)
 - 1.2350000 1.24 (Half way—round up)
 - 1.2450000 1.24 (Half way—round down)
Rounding Binary Numbers

- Binary Fractional Numbers
 - “Even” when least significant bit is 0
 - “Half way” when bits to right of rounding position = 100…

- Examples
 - Round to nearest 1/4 (2 bits right of binary point)

<table>
<thead>
<tr>
<th>Value</th>
<th>Binary</th>
<th>Rounded</th>
<th>Action</th>
<th>Rounded Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 3/32</td>
<td>10.000112</td>
<td>10.002</td>
<td>(<1/2—down)</td>
<td>2</td>
</tr>
<tr>
<td>2 3/16</td>
<td>10.001102</td>
<td>10.012</td>
<td>(>1/2—up)</td>
<td>2 1/4</td>
</tr>
<tr>
<td>2 7/8</td>
<td>10.111002</td>
<td>11.002</td>
<td>(1/2—up)</td>
<td>3</td>
</tr>
<tr>
<td>2 5/8</td>
<td>10.101002</td>
<td>10.102</td>
<td>(1/2—down)</td>
<td>2 1/2</td>
</tr>
</tbody>
</table>
FP Multiplication

\((-1)^{s1} M_1 \ 2^{E_1} \times (-1)^{s2} M_2 \ 2^{E_2}\)

- **Exact Result:** \((-1)^s \ M \ 2^E\)
 - Sign \(s\): \(s1 \ ^\oplus \ s2\)
 - Significand \(M\): \(M1 \times M2\)
 - Exponent \(E\): \(E1 + E2\)

- **Fixing**
 - If \(M \geq 2\), shift \(M\) right, increment \(E\)
 - If \(E\) out of range, overflow
 - Round \(M\) to fit \(\text{frac}\) precision

- **Implementation**
 - Biggest chore is multiplying significands
Floating Point Addition

\[(-1)^{s_1} M_1 \ 2^{E_1} + (-1)^{s_2} M_2 \ 2^{E_2} \]

Assume \(E_1 > E_2 \)

Exact Result: \((-1)^s \ M \ 2^E \)

- Sign \(s \), significand \(M \):
 - Result of signed align & add
- Exponent \(E \): \(E_1 \)

Fixing

- If \(M \geq 2 \), shift \(M \) right, increment \(E \)
- If \(M < 1 \), shift \(M \) left \(k \) positions, decrement \(E \) by \(k \)
- Overflow if \(E \) out of range
- Round \(M \) to fit \text{frac} \ precision
Mathematical Properties of FP Add

- **Compare to those of Abelian Group**
 - Closed under addition? \(\text{Yes} \)
 - But may generate infinity or NaN
 - Commutative? \(\text{Yes} \)
 - Associative? \(\text{No} \)
 - Overflow and inexactness of rounding
 - 0 is additive identity? \(\text{Yes} \)
 - Every element has additive inverse \(\text{Almost} \)
 - Except for infinities & NaNs

- **Monotonicity**
 - \(a \geq b \Rightarrow a+c \geq b+c \) ? \(\text{Almost} \)
 - Except for infinities & NaNs
Mathematical Properties of FP Mult

- **Compare to Commutative Ring**
 - Closed under multiplication? *Yes*
 - But may generate infinity or NaN
 - Multiplication Commutative? *Yes*
 - Multiplication is Associative? *No*
 - Possibility of overflow, inexactness of rounding
 - 1 is multiplicative identity? *Yes*
 - Multiplication distributes over addition? *No*
 - Possibility of overflow, inexactness of rounding

- **Monotonicity**
 - \(a \geq b \& c \geq 0 \Rightarrow a \cdot c \geq b \cdot c? \) *Almost*
 - Except for infinities & NaNs
Today: Floating Point

- Background: Fractional binary numbers
- IEEE floating point standard: Definition
- Example and properties
- Rounding, addition, multiplication
- Floating point in C
- Summary
Floating Point in C

- **C Guarantees Two Levels**
 - float single precision
 - double double precision

- **Conversions/Casting**
 - Casting between int, float, and double changes bit representation
 - Double/float → int
 - Truncates fractional part
 - Like rounding toward zero
 - Not defined when out of range or NaN: Generally sets to TMin
 - int → double
 - Exact conversion, as long as int has ≤ 53 bit word size
 - int → float
 - Will round according to rounding mode
Floating Point Puzzles

For each of the following C expressions, either:

- Argue that it is true for all argument values
- Explain why not true

- \(x == (\text{int})(\text{float}) x \)
- \(x == (\text{int})(\text{double}) x \)
- \(f == (\text{float})(\text{double}) f \)
- \(d == (\text{float}) d \)
- \(f == -(-f); \)
- \(2/3 == 2/3.0 \)
- \(d < 0.0 \) \(\Rightarrow \) \(((d*2) < 0.0) \)
- \(d > f \) \(\Rightarrow \) \(-f > -d \)
- \(d * d >= 0.0 \)
- \((d+f)-d == f \)

Assume neither \(d \) nor \(f \) is NaN
Today: Floating Point

- Background: Fractional binary numbers
- IEEE floating point standard: Definition
- Example and properties
- Rounding, addition, multiplication
- Floating point in C
- Summary
Summary

- IEEE Floating Point has clear mathematical properties
- Represents numbers of form $M \times 2^E$
- One can reason about operations independent of implementation
 - As if computed with perfect precision and then rounded
- Not the same as real arithmetic
 - Violates associativity/distributivity
 - Makes life difficult for compilers & serious numerical applications programmers
More Slides
Creating Floating Point Number

Steps
- Normalize to have leading 1
- Round to fit within fraction
- Postnormalize to deal with effects of rounding

Case Study
- Convert 8-bit unsigned numbers to tiny floating point format
- Example Numbers
 - 128: 10000000
 - 15: 00001101
 - 33: 00010001
 - 35: 00010011
 - 138: 10001010
 - 63: 00111111
Normalize

- **Requirement**
 - Set binary point so that numbers of form 1.xxxxx
 - Adjust all to have leading one
 - Decrement exponent as shift left

<table>
<thead>
<tr>
<th>Value</th>
<th>Binary Fraction</th>
<th>Exponent</th>
</tr>
</thead>
<tbody>
<tr>
<td>128</td>
<td>10000000</td>
<td>1.0000000</td>
</tr>
<tr>
<td>15</td>
<td>00001101</td>
<td>1.1010000</td>
</tr>
<tr>
<td>17</td>
<td>00010001</td>
<td>1.0001000</td>
</tr>
<tr>
<td>19</td>
<td>00010011</td>
<td>1.0011000</td>
</tr>
<tr>
<td>138</td>
<td>10001010</td>
<td>1.0001010</td>
</tr>
<tr>
<td>63</td>
<td>00111111</td>
<td>1.1111100</td>
</tr>
</tbody>
</table>
Rounding

1. BBG RXXX

- **Guard bit**: LSB of result
- **Sticky bit**: OR of remaining bits
- **Round bit**: 1st bit removed

Round up conditions

- **Round = 1, Sticky = 1** \(\Rightarrow > 0.5 \)
- **Guard = 1, Round = 1, Sticky = 0** \(\Rightarrow \) Round to even

<table>
<thead>
<tr>
<th>Value</th>
<th>Fraction</th>
<th>GRS</th>
<th>Incr?</th>
<th>Rounded</th>
</tr>
</thead>
<tbody>
<tr>
<td>128</td>
<td>1.0000000</td>
<td>00*</td>
<td>N</td>
<td>1.000</td>
</tr>
<tr>
<td>15</td>
<td>1.1010000</td>
<td>10*</td>
<td>N</td>
<td>1.101</td>
</tr>
<tr>
<td>17</td>
<td>1.0001000</td>
<td>010</td>
<td>N</td>
<td>1.000</td>
</tr>
<tr>
<td>19</td>
<td>1.0011000</td>
<td>110</td>
<td>Y</td>
<td>1.010</td>
</tr>
<tr>
<td>138</td>
<td>1.0001010</td>
<td>011</td>
<td>Y</td>
<td>1.001</td>
</tr>
<tr>
<td>63</td>
<td>1.1111100</td>
<td>111</td>
<td>Y</td>
<td>10.000</td>
</tr>
</tbody>
</table>
Postnormalize

- **Issue**
 - Rounding may have caused overflow
 - Handle by shifting right once & incrementing exponent

<table>
<thead>
<tr>
<th>Value</th>
<th>Rounded</th>
<th>Exp</th>
<th>Adjusted</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>128</td>
<td>1.000</td>
<td>7</td>
<td></td>
<td>128</td>
</tr>
<tr>
<td>15</td>
<td>1.101</td>
<td>3</td>
<td></td>
<td>15</td>
</tr>
<tr>
<td>17</td>
<td>1.000</td>
<td>4</td>
<td></td>
<td>16</td>
</tr>
<tr>
<td>19</td>
<td>1.010</td>
<td>4</td>
<td></td>
<td>20</td>
</tr>
<tr>
<td>138</td>
<td>1.001</td>
<td>7</td>
<td></td>
<td>134</td>
</tr>
<tr>
<td>63</td>
<td>10.000</td>
<td>5</td>
<td>1.000/6</td>
<td>64</td>
</tr>
</tbody>
</table>