15-213, Fall 2008
Lab Assignment L4: Writing Your Own Unix Shell
Assigned: Tue, Oct 7, Due: Tue, Oct 21, 11:59PM
Last Possible Time to Turn in: Thu, Oct 23, 11:59PM

Elie Krevat and Taiyang Cherkr evat @ndr ew. cnu. edu, tai yangc@ndrew. crmu. edu) are
the lead TAs for this assignment.

1 Introduction

The purpose of this assignment is to become more familidr thié¢ concepts of process control and sig-
nalling. You'll do this by writing a simple Unix shell progmathat supports job control and 1/O redirection.
Please read the whole writeup before starting.

2 Logistics

This is an individual project. You should do this lab on onalaf Fish machines. As always, clarifications
and corrections will be posted on the Autolab message board.

3 Hand Out Instructions

Download the file shl ab- handout . t ar from Autolab, and copy it to the protected directory (thb
directory) in which you plan to do your work. Then do the following a Fish machine;

e Type the commandar xvf tshl ab-handout.tar to expand the tar-file.
e Type your name and Andrew ID in the header comment at the tbg bf c.

e Type the commandake to compile and link the driver, the trace interpreter, araltést routines.

Looking at thet sh. c (tiny shell) file, you will see that it contains a skeleton of a simple Ustivell. It will
not, of course, function as a shell if you compile and run iwndo help you get started, we have already

implemented the less interesting functions such as theesithat manipulate the job list and the command
line parser. Your assignment is to complete the remainingtgffainctions listed below. As a sanity check

for you, we've listed the approximate number of lines of cémleeach of these functions in our reference
solution (which includes lots of comments, this is a gooddhi

e eval : Main routine that parses and interprets the command liB@0 [ines, including some helper
functions]

e si gchl d_handl er : Catches SIGCHLD signals. [80 lines]
e si gi nt _handl er: Catches SIGINTdt r | - ¢) signals. [15 lines]
e si gt st p_.handl er: Catches SIGTSTR(r | - z) signals. [15 lines]

When you wish to test your shell, typeake to recompile it. To run it, typé sh to the command line:

l'inux> ./tsh
tsh> [type commands to your shell here]

4 General Overview of Unix Shells

A shellis an interactive command-line interpreter that runs @otg on behalf of the user. A shell repeat-
edly prints a prompt, waits foreommand lineonst di n, and then carries out some action, as directed by
the contents of the command line.

The command line is a sequence of ASCII text words delimitgdvhitespace. The first word in the
command line is either the name of a built-in command or thierzane of an executable file. The remaining
words are command-line arguments:

e If the first word is a built-in command, the shell immediatelyecutes the command in the current
process.

e Otherwise, the word is assumed to be the pathname of an ekéeydrogram. In this case, the shell
forks a child process, then loads and runs the program inahiext of the child.

The child processes created as a result of interpretinggéestommand line are known collectively as a
job. In general, a job can consist of multiple child processeseoted by Unix pipes. However, the shell
you write in this lab need not support pipes.

If the command line ends with an ampersai&d, ‘then the job runs in théackground, which means that
the shell does not wait for the job to terminate before priptihe prompt and awaiting the next command
line. Otherwise, the job runs in tHereground, which means that the shell waits for the job to terminate
before awaiting the next command line. Thus, at any poininire t at most one job can be running in the
foreground. However, an arbitrary number of jobs can ruténtdackground.

For example, typing the command line

tsh> j obs

causes the shell to execute the buil{-imbs command. Typing the command line
tsh> /bin/ls -1 -d

runs thel s program in the foreground. By convention, the shell enstlias when the program begins
executing its main routine

int main(int argc, char xargv[])

thear gc andar gv arguments have the following values:

argc ==
argv[0] == *‘/bin/ls"’
argv[1]==*"-1""
argv[2]==""'-d"’

Alternatively, typing the command line
tsh> /bin/ls -1 -d &

runs thel s program in the background.

Unix shells support the notion @b control, which allows users to move jobs back and forth between back-
ground and foreground, and to change the process statan(grstopped, or terminated) of the processes
in a job. For example,

e Typingctrl - c causes a SIGINT signal to be delivered to each process irotegrbund job. The
default action for SIGINT is to terminate the process.

e Similarly, typingct r | - z causes a SIGTSTP signal to be delivered to each processfordgeound
job. The default action for SIGTSTP is to place a processerstbpped state, where it remains until
it is awakened by the receipt of a SIGCONT signal.

Unix shells also provide various built-in commands thatmrpjob control. For example:
e j obs: List the running and stopped background jobs.
e bg j ob: Change a stopped background job into a running backgraund |
e f g j ob: Change a stopped or running background job into a runniregfound job.
e kill job: Terminate a job.

Unix shells also support the notion BO redirection, which allows users to redirest di n andst dout
to disk files. For example, typing the command line

tsh> /bin/ls > foo
redirects the output dfs to a file calledf oo. Similarly,

tsh> /bin/cat < foo

displays the contents of fifeoo onst dout .

5 Thet sh Specification
Your t sh shell should have the following features:

e The prompt should be the string $h> .

e The command line typed by the user should consistrodiiae and zero or more arguments, all sepa-
rated by one or more spacesnkne is a built-in command, thehsh should handle it immediately
and wait for the next command line. Otherwisesh should assume thatane is the path of an
executable file, which it loads and runs in the context of amalrchild process (In this context, the
term job refers to this initial child process). If you are running teys programs likd s, you will
need to enter the full path (in this cakbi n/ | s) because your shell does not have search paths.

e t sh need not support pipe$), butMUST support I/O redirection €” and “>"), for instance:

tsh> /bin/cat < foo > bar

Your shell must support both input and output redirectiothsnasame command line.

e Typingctrl-c (ctrl-2z)should cause a SIGINT (SIGTSTP) signal to be sent to thesotifore-
ground job, as well as any descendants of that job (e.g., lEild/mrocesses that it forked). If there is
no foreground job, then the signal should have no effect.

¢ If the command line ends with an ampersafadthent sh should run the job in the background.
Otherwise, it should run the job in the foreground.

e Each job can be identified by either a process ID (PID) or a®BJID), which is a positive integer
assigned by sh. JIDs should be denoted on the command line by the prégix-or example, %%”
denotes JID 5, and5” denotes PID 5. (We have provided you with all of the routiges need for
manipulating the job list.)

e t sh should support the following built-in commands:

— Thequi t command terminates the shell.
— Thej obs command lists all background jobs.

— Thebg j ob command restartpb by sending it a SIGCONT signal, and then runs it in the
background. Th¢ob argument can be either a PID or a JID.

— Thefg j ob command restartpb by sending it a SIGCONT signal, and then runs it in the
foreground. Thegob argument can be either a PID or a JID.

¢ Your shell should be able to redirect the output fromjtiedds built-in command. For example

tsh> jobs > foo

e t sh should reap all of its zombie children. If any job terminabesxause it receives a signal that
it didn’t catch, thert sh should recognize this event and print a message with the D and a
description of the offending signal.

6 Checking Your Work

Running your shell. The best way to check your work is to run your shell from the s@mnd line. Your
initial testing should be done manually from the command.liRun your shell, type commands to it, and
see if you can break it. Use it to run real programs!

Reference solution.The 64-bit Linux executableshr ef is the reference solution for the shell. Run this
program (on a 64-bit machine) to resolve any questions yaa about how your shell should behave. Your
shell should emit output that is identical to the refereraatson (except for PIDs, of course, which change
from run to run).

Once you are confident that your shell is working, then you lbagin to use some tools that we have
provided to help you check your work more thoroughly. (Thasethe same tools that the autograder will
use when you submit your work for credit.)

Trace interpreter. We have provided a set of trace fildas @ce=*. t xt) that validate the correctness of
your shell (the appendix section at the end of this handostriges each trace file briefly). Each trace
file tests one shell feature. For example, does your shalgréze a particular built-in command? Does it
respond correctly to the user typingar| - c?.

Ther unt r ace program (the trace interpreter) interprets a set of shefimands specified by a single trace
file:

linux> ./runtrace -h
Usage: runtrace -f <file> -s <shellprog> [-hV]

Options:
-h Print this nessage
-s <shel |l > Shell programto test (default ./tsh)
-f <file> Trace file
-V Be nore verbose

The neat thing about the trace files is that they generateathe sutput you would have gotten had you run
your shell interactively (except for an initial commentttidentifies the trace). For example:

[inux> ./runtrace -f trace05.txt -s ./tsh
#

trace05.txt - Run a background job

#

tsh> ./myspinl &

[1] (15849) ./nyspinl &

tsh> quit

The lower-numbered trace files do very simple tests, and itifehknumbered tests do increasingly more
complicated tests.

Shell driver. After you have used unt r ace to test your shell on each trace file individually, then yoa ar
ready to test your shell with the shell driver. Thdr i ver program usesunt r ace to run your shell on

each trace file, compares the output to the output producddetneference shell, displays thef f if they
differ, and optionally sends the results to the Autolab eerv

li nux> ./sdriver -h

Usage: sdriver [-hV] [-s <shell> -t <tracenunt -i <iters>]
Opt i ons

-h Print this nessage.

-i <iters> Run each trace <iters> tines (default 4)

-s <shel |l > Nane of test shell (default ./tsh)

-t <n> Run trace <n> only (default all)

-V Be nore verbose.

Running the driver without any arguments tests your shelblbrof the trace files. To help detect race
conditions in your code, the driver runs each trace multiphes. You will need to pass each of the tests to
get credit for a particular trace:

i nux> ./sdriver

Running 4 iters of trace00.txt
1. Running trace00.txt...

2. Running trace00.txt...

3. Running trace00.txt...

4. Running trace00.txt...
Running 4 iters of traceOl.txt
1. Running traceOl.txt...

2. Running traceOl.txt...

3. Running traceOl.txt...

4. Running traceOl.txt...
Running 4 iters of trace02.txt
1. Running trace02.txt...

2. Running trace02.txt...

3. Running trace02.txt...

4. Running trace02.txt...

Running 4 iters of trace23.txt
1. Running trace23.txt...
2. Running trace23.txt...
3. Running trace23.txt...
4. Running trace23.txt. ..
Running 4 iters of trace24.txt
1. Running trace24.txt...
2. Running trace24.txt...
3. Running trace24.txt. ..
4. Running trace24.txt. ..

Sunmary: 25/25 correct traces

Use the optional i argument to control the number of times the driver runs eadetfile:
linux> ./sdriver -i 1

Runni ng trace00. txt...

Runni ng traceOl.txt...
Runni ng trace02.txt...

Runni ng trace03.txt...

Runni ng trace23.txt..
Runni ng trace24.txt..

Sunmary: 25/25 correct traces
Use the optional t argument to test a single trace file:

linux> ./sdriver -t 06
Runni ng trace06. t xt..
Success: The test and reference outputs for trace06.txt natched!

Note: The driver program runs the reference shell, whichG4-ait binary, and thus will not run on a 32-bit
machine.

7 Hints

e Read and understand every word of Chapter 8 (Exceptionalr@dfiow) and Chapter 11 (System-
level 1/0O) in your textbook.

e Read the code i sh. ¢ carefully before you start. Understand the high-level minflow, get
familiar with the defined global variables and the helpetiras.

e Play with your shell by typing commands to it directly. Doniiake the mistake of running the trace
generator and driver immediately. Develop some familfaaitd intuition about how your shell works
before testing it with the automated tools.

e Only after you have tested your shell directly from the comchand are fairly confident that it is
correct should you start testing with theint r ace and driver programs.

e Use the trace files to guide the development of your shell.rtiBgawith t r ace00. t xt , make
sure that your shell produces tidentical output as the reference shell. Then move on to trace file
trace01. t xt,and so on.

e Be careful about race conditions on the job list. Remembarytbu cannot make any assumptions
about the order of execution of the parent and child aftekifigr: In particular, you cannot assume
that the child will still be running when the parent returr@ thef or k. In fact, our driver has code
that purposely introduces non-determinism in the orddrttiteaparent and child execute after forking.
Also, remember that signal handlers run concurrently vighgrogram and can interrupt it anywhere,
unless you explicitly block the receipt of the signals.

e Thewai tpid,kill,fork,execve,set pgi dandsi gpr ocnask functions will come in very
handy. The WUNTRACED and WNOHANG options ¥a@i t pi d will also be useful. Useman to
check out the details about each function.

e When you implement your signal handlers, be sure to Sr@ NT andSI GT'STP signals to the en-
tire foreground process group, usinggi d” instead of 'pbi d” in the argument to th&i | | function.
The driver program specifically tests for this error.

One of the tricky parts of the assignment is deciding on tleealion of work between theval and
si gchl d_handl er functions when the shell is waiting for a foreground job tasfin We find that
the simplest approaches only ca#li t pi d in one place.

In eval , the parent must uss gpr ocnask to block SI GCHLD, SI G NT, andSI GTSTP signals
before it forks the child, and then unblock these signalairagsingsi gpr ocrmask after it adds the
child to the job list by callingaddj ob. Since children inherit thbl ocked vectors of their parents,
the child must be sure to then unblock these signals befarédts the new program. The child
should also restore the default handers for the signalsatkagnored by the shell.

The parent needs to block signals in this way in order to ava conditions (e.g., the child is
reaped byi gchl d_handl er (and thus removed from the job lidigfore the parent calladdj ob).
Section 8.5.6 has details about the race conditions and btk signals explicitly.

Programs such asop, | ess, vi, andenacs do strange things with the terminal settings. Don't
run these programs from your shell. Stick with simple tex$dx programs such &$i n/ cat,
[bin/ls,/bin/ps,and/ bin/echo.

When you run your shell from the standard Unix shell, youllseeunning in the foreground process
group. If your shell then creates a child process, by detaalt child will also be a member of the
foreground process group. Since typitigr | - ¢ sends a SIGINT to every process in the foreground
group, typingct r | - ¢ will send a SIGINT to your shell, as well as to every procest ytour shell
created, which obviously isn’t correct.

Here is the workaround: After thkor k, but before theexecve, the child process should call
set pgi d(0, 0), which puts the child in a new process group whose group IDbestical to the
child’s PID. This ensures that there will be only one procgssir shell, in the foreground process
group. When you typetrl - ¢, the shell should catch the resulting SIGINT and then fodwiar
to the appropriate foreground job (or more precisely, tlee@ss group that contains the foreground
job).

8 Evaluation

Your score will be computed out of a maximum of 110 points damethe following distribution:

100 Correctness: 25 trace files at 4 pts each

10 Style points. We expect you to have good comments and to dhecieturn value of EVERY system

call. We also expect you to break up large functions suckvad into smaller helper functions, to
enhance readability and avoid duplicating code. Some aghbout commenting:

e Do begin each routine with a block comment describing it &tla high level.

Do preface related lines of code with a block comment.

Do use a consistent indenting style.

Do keep your comments within 72 character lines (no long centriines).
Don't simply comment each line.

You should also follow other guidelines of good style, sushugsing a consistent indentation scheme,
using descriptive variable names, and grouping logicalgted blocks of code with whitespace.

Your solution shell will be tested for correctness on a @4fieh machine (the Autolab server), using the
same driver and trace files that were included in your handioeittory. Your shell should produdgentical
output on these traces as the reference shell, with only xeepions:

e The PIDs can (and will) be different.

e The output of thd bi n/ ps commands irt racel9. t xt ,trace20. t xt, andt race2l. t xt
will be different from run to run. However, the running statef anymyspl i t processes in the
output of the/ bi n/ ps command should be identical.

The driver deals with all of these subtleties when it checksbrrectness.

9 Hand In Instructions

e Make sure you have included your name and Andrew ID in thedrezamment of sh. c.

e Hand in yourt sh. c file for credit by uploading it to Autolab. You may hand in aseof as you like.
You will be graded on théast version you hand in.

e After you hand in, it takes a minute or two for the driver to thinough multiple iterations of each
trace file.

e We'll be using a sophisticated cheat checker that compamedihs from this year and previous years.
Please don'’t copy another student’s code. Start early,fammiiget stuck, come see your instructors
for help.

Good luck!

Appendix: Trace Files

The trace driver runs an instance of your shell in a child @sscand communicates with the shell interac-
tively in a way that mimics the behavior of a user. To test thbavior of your shell, the trace driver reads
in trace files that specify shell line commands (that areaigtisent to the shell) as well as a few special
synchronization commands (that are interpreted by theedrishen handling the shell process). The trace
files may also reference a number of shell test programs forperarious functions, and you may refer to

the code and comments of these test programs for more infiarma

The format of the trace files is as follows:

e The comment character#s Everything to the right of it on a line is ignored.

e Each trace file is written so that the output from the shellashexactly what the user typed. We do
this by using the bi n/ echo program, which not only tests the shell’s ability to run piags, but
also shows what the user typed. For example:

/bin/echo -e tsh\076 ./ mnmyspinl \046

Note: octal\076 is > and octal\046 is & These are special shell metacharacters that need to be
escaped. This line representsh> . / nyspi nl &, thatis, a user trying to run/ myspi nlin the
background.

e There are also a few special commands for synchronizatitvneles the job (your shell) and the parent
process (the driver) and to send Unix signals from the pdcethie job.

WAIT Wait for a sync signal from the job over its synchronizing ddmsocket.
SIGNAL | Send a sync signal to the job over its synchronizing domatkedo

Read and print all responses from the shell until you seeekegthell prompt.
NEXT This command is essential for synchronizing with the shadl mimics the way
people wait until they see the shell prompt until they typeniext string.
SIGINT | Send a SIGINT signal to the job.

SIGTSTP| Send a SIGTSTP signal to the job.

10

The following table describes what each trace file tests am gbell against the reference solution.

NOTE: this table is provided so that you can quickly get a high Igiefure about the testing traces. The
explanation here is over-simplified. To understand whattx&ach trace file does, you need to read the

trace files.

trace00.txt
traceOl.txt
trace02.txt
trace03.txt
trace04.txt
trace05.txt
trace06.txt
traceQ7.txt
trace08.txt
trace09.txt
tracel0.txt
tracell.txt
tracel2.txt
tracel3.txt
tracel4.txt
tracel5.txt
tracel6.txt
tracel7.txt
tracel8.txt
tracel9.txt
trace20.txt
trace2l.txt
trace22.ixt
trace23.txt
trace24.ixt

Properly terminate on EOF.

Process built-in quit command.

Run a foreground job that prints an environment variable.
Run a synchronizing foreground job without any arguments.
Run a foreground job with arguments.

Run a background job.

Run a foreground job and a background job.

Use the jobs built-in command.

Send fatal SIGINT to foreground job.

Send SIGTSTP to foreground job.

Send fatal SIGTERM (15) to a background job.

Child sends SIGINT to itself.

Child sends SIGTSTP to itself.

Forward SIGINT to foreground job only.

Forward SIGTSTP to foreground job only.

Process bg built-in command (one job).

Process bg built-in command (two jobs).

Process fg built-in command (one job).

Process fg built-in command (two jobs).

Forward SIGINT to every process in foreground process groy
Forward SIGTSTP to every process in foreground procesggt
Restart every stopped process in process group.

I/O redirection (input).

I/0 redirection (input and output).

I/O redirection (input and output, but different order).

11

p

