
Recitation 11:
I/O Problems

Andrew Faulring
15213 Section A

18 November 2002

Logistics

• faulring@cs.cmu.edu

• Office hours
– NSH 2504
– Permanently moving to Tuesday 2–3

• What’s left
– Lab 6 Malloc: due on Thursday, 21 Nov
– Lab 7 Proxy: due on Thursday, 5 Dec
– Final Exam: 8:30am on Tuesday,

17 Dec, in Porter Hall 100

Today’s Plan

• Robust I/O
• Chapter 11 Practice Problems

Why Use Robust I/O
• Handles interrupted system calls

– Signal handlers

• Handles short counts
– Encountering end-of-file (EOF) on reads (disk files)
– Reading text lines from a terminal
– Reading and writing network sockets or Unix pipes

• Useful in network programs
– Subject to short counts
– Internal buffering constraints
– Long network delays
– Unreliable

Rio: Unbuffered Input/Output

• Transfer data directly between memory and a file
• No application level buffering
• Useful for reading/writing binary data to/from networks

– (Though text strings are binary data.)

ssize_t rio_readn(int fd, void* usrbuf, size_t n)
– Reads n bytes from fd into usrbuf
– Only returns short on EOF

ssize_t rio_writen(int fd, void* usrbuf, size_t n)
– Writes n bytes from usrbuf to file fd
– Never returns short count

Rio: Buffered Input
void rio_readinitb(rio_t* rp, int fd);

– Called only once per open file descriptor
– Associates fd with a read buffer rp

ssize_t rio_readlineb(rio_t* rp, void* usrbuf, size_t maxlen);
– For reading lines from a text file only
– Read a line (stop on ‘\n’) or maxlen-1 chars from file rp to usrbuf
– Terminate the text line with null (zero) character
– Returns number of chars read

ssize_t rio_readnb(rio_t* rp, void* usrbuf, size_t n);
– For both text and binary files
– Reads n bytes from rp into usrbuf
– Result string is NOT null-terminated!
– Returns number of chars read

rio_readlineb
ssize_t rio_readlineb(rio_t *rp, void *usrbuf, size_t maxlen)
{

int n, rc;
char c, *bufp = usrbuf;
for (n = 1; n < maxlen; n++) {

if ((rc = rio_read(rp, &c, 1)) == 1) {
*bufp++ = c;
if (c == '\n')

break;
} else if (rc == 0) {

if (n == 1)
return 0; /* EOF, no data read */

else
break; /* EOF, some data was read */

} else
return -1; /* error */

}
*bufp = 0;
return n;

}

Do not interleave

rio_readinitb
rio_readlineb
rio_readnb

rio_readn
rio_writen

• Do not interleave calls on the same
file descriptor to these two sets of
functions

• Why?

Rio Error Checking

• All functions have upper case equivalents
(Rio_readn …), which call unix_error if
the function encounters an error

– Short reads are not errors
– Also handles interrupted system calls

– But does not ignore EPIPE errors, which are
not fatal errors for Lab 7

Problems from Chapter 11

• 11.1–11.5
• Handout contains the problems

Problem 11.1

#include "csapp.h"
int main()
{

int fd1, fd2;
fd1 = Open("foo.txt", O_RDONLY, 0);
Close(fd1);
fd2 = Open("baz.txt", O_RDONLY, 0);
printf("fd2 = %d\n", fd2);
exit(0);

}

What is the output of the following
program?

Answer to 11.1

• Default file descriptors:
– stdin (descriptor 0)
– stdout (descriptor 1)
– stderr (descriptor 2)

• open always returns lowest, unopened descriptor
• First open returns 3. close frees it.
• So second open also returns 3.

• Program prints:
fd2 = 3

Kernel Structure for Open Files

• Descriptor table
– One per process
– Children inherit from parents

• File Table
– The set of all open files
– Shared by all processes
– Reference count of number of file descriptors pointing to

each entry

• V-node table
– Contains information in the stat structure
– Shared by all processes

Problem 11.2

Suppose that the disk file foobar.txt consists of
the 6 ASCII characters "foobar". Then what is the
output of the following program?
#include "csapp.h"
int main()
{

int fd1, fd2;
char c;
fd1 = Open("foobar.txt", O_RDONLY, 0);
fd2 = Open("foobar.txt", O_RDONLY, 0);
Read(fd1, &c, 1);
Read(fd2, &c, 1);
printf("c = %c\n", c);
exit(0);

}

Answer to 11.2
• Two descriptors fd1 and fd2
• Two open file table entries, each with their own

file positions for foobar.txt
• The read from fd2 also reads the first byte of foobar.txt
• So, the output is

c = f
and not

c = o

Problem 11.3

As before, suppose the disk file foobar.txt
consists of 6 ASCII characters "foobar". Then what
is the output of the following program?

#include "csapp.h"
int main()
{

int fd;
char c;
fd = Open("foobar.txt", O_RDONLY, 0);
if(Fork() == 0) {

Read(fd, &c, 1);
exit(0);

}
Wait(NULL);
Read(fd, &c, 1);
printf("c = %c\n", c);
exit(0);

}

Answer to 11.3

• Child inherits the parent’s descriptor
table.

• Child and parent share an open file
table entry (refcount == 2).

• Hence they share a file position!

• The output is
c = o

Problem 11.4

• How would you use dup2 to redirect
standard input to descriptor 5?

• int dup2(int oldfd, int newfd);
–Copies descriptor table entry oldfd to

descriptor table entry newfd

Answer to 11.4

dup2(5,0);

or

dup2(5,STDIN_FILENO);

Problem 11.5

Assuming that the disk file foobar.txt consists of
6 ASCII characters "foobar". Then what is the
output of the following program?

#include "csapp.h"
int main()
{

int fd1, fd2;
char c;
fd1 = Open("foobar.txt", O_RDONLY, 0);
fd2 = Open("foobar.txt", O_RDONLY, 0);
Read(fd2, &c, 1);
Dup2(fd2, fd1);
Read(fd1, &c, 1);
printf("c = %c\n", c);
exit(0);

}

Answer to 11.5

• We are redirecting fd1 to fd2. So the
second Read uses the file position
offset of fd2.

c = o

