CS 213, Fall 2001
Lab Assignment L4: Code Optimization
Assigned: October 11
Due: October 25, 11:59PM

Sanjit Seshia (sanj it +213@s. cnu. edu)is the lead person for this assignment.

1 Introduction

This assignment deals with optimizing memory intensive code. Image processing offers many examples of
functions that can benefit from optimization. In this lab, we will consider two image processing operations:
r ot at e, which rotates an image counter-clockwise by 90°, and snoot h, which “smooths” or “blurs” an
image.

For this lab, we will consider an image to be represented as a two-dimensional matrix M, where M; ;
denotes the value of (4, j)th pixel of M. Pixel values are triples of red, green, and blue (RGB) values. We
will only consider square images. Let IV denote the number of rows (or columns) of an image. Rows and
columns are numbered, in C-style, from0to N — 1.

Given this representation, the r ot at e operation can be implemented quite simply as the combination of
the following two matrix operations:

e Transpose: For each (4, j) pair, M; ; and M ; are interchanged.

e Exchange rows: Row i is exchanged withrow N — 1 — 3.

This combination is illustrated in Figure 1.

The snoot h operation is implemented by replacing every pixel value with the average of all the pixels
around it (in a maximum of 3 x 3 window centered at that pixel). Consider Figure 2. The values of pixels
M2[1] [1] and M2[N- 1] [N- 1] are given below:

10 23— ML[1][3]
9
N2 25N ML[i][]]
4

M2[1][1] =

M2[N — 1][N — 1] =

—_— —_—

(0,0)

Rotate by 90

(counter—clockwise)

(0,0

(0,0) -

Exchange
Transpose Rows

Figure 1: Rotation of an image by 90° counterclockwise

M1[1][1] M2[1][1]

-
P

smooth
—_—

4 v/

MIIN-1TIN-11 M2IN-1TIN-11

Figure 2: Smoothing an image
2 Logistics
The files for this assignment can be retrieved from

[af s/ cs. cnu. edu/ acadeni c/ cl ass/ 15213-f 01/ L4/ L4. t ar

Once you’ve copied this file into a (private) directory, run the command t ar - xvf L4.tar and fill in
your team information in the structure at the beginning of the file r ot at e. ¢. You may work in a group of
up to two people in solving the problems of this assignment.

When you have completed the lab, you will hand in three files: rot ate_cache. c,rotate. c and
snoot h. ¢ that contain your solution. Each file corresponds to a part of this lab. For the first part you will
be graded on the cache performance of a routine r ot at e inr ot at e_cache. c. For the second part, you
will be graded on the performance of your code for the routine r ot at e inr ot at e. ¢, and for the last part

you will be graded on the performance of your code for the routine snoot h in snoot h. ¢. Your grade
will be determined by how well your routines perform compared to an optimized reference solution.

In addition to running your code locally on a Fish machine, you will be able to submit your source files to
a timing server. Both this and the final hand-in will be performed via a web interface. The instructions for
web hand-in will be posted on the lab webpage.

Any clarifications and revisions to the assignment will be posted on the course web page.

3 Implementation Overview

Data Structures

The core data structure deals with image representation. A pi xel is a struct as shown below:

t ypedef struct {
unsi gned short red; /* R value */
unsi gned short green; /* G value */
unsi gned short blue; /* B value */
} pixel;

As can be seen, RGB values have 16-bit representations(“16-bit color”). An image | is represented as a
one-dimensional array of pi xel s, where the (¢, 7)th pixel is| [RI DX(i , j , n)] . Here n is the dimension
of the image matrix, and Rl DX is a macro defined as follows:

#define RIDX(i,j,n) ((i)*(n)+(j))

See the file def s. h for this code.

Rotate

The following C function computes the result of rotating the source image sr ¢ by 90° and stores the result
in destination image dst . di mis the dimension of the image.

void naive_rotate(int dim pixel *src, pixel *dst) {
int i, j;

for(i=0; 1 < diny i++)
for(j=0; | <dim j++)
dst[RIDX(dim1-j,i,dinm] = src[RIDX(i,j,dim];

return;

}

The above code scans the rows of the source image matrix, copying to the columns of the destination image
matrix. Your task is to rewrite this code to make it run as fast as possible using techniques like code motion,
loop unrolling and blocking.

See the file r ot at e. ¢ for this code.

Smooth

The smoothing function takes as input a source image sr ¢ and returns the smoothed result in the destination
image dst . Here is part of an implementation:

voi d naive_snooth(int dim pixel *src, pixel *dst) {
int i, j;

for(i=0; i < din i++)
for(j=0; | < dim j++)
dst[RIDX(i,j,dim] = avg(dim i, j, src); /* Smooth the (i,j)th pi

return;

}

The function avg returns the average of all the pixels around the (i, j) th pixel. Your task is to optimize
snoot h (and avg) to run as fast as possible. (Note: The function avg is a local function and you can get
rid of it altogether to implement snoot h in some other way.)

This code (and an implementation of avg) is in the file smoot h. c.

Perfor mance measures

Our main performance measure is CPE or Cycles per Element. If a function takes C' cycles to run for
an image of size N x N, the CPE value is C/N?2. Table 1 summarizes the performance of the naive
implementations shown above and compares it against an optimized implementation. Performance is shown
for for 5 different values of N. All measurements were made on the Pentium I11 Xeon Fish machines.

The ratios (speedups) of the optimized implementation over the naive one will constitute a score of your
implementation. To summarize the overall effect over different values of V, we will compute the geometric
mean of the results for these 5 values. That is, if the measured speedups for N = {32, 64,128, 256,512}
are R3o, Rg4, R12s, Rose, and Rs1o then we compute the overall performance as

R = </R3s X Rgs X Riog X Rosg X Rs12

Assumptions

To make life easier, you can assume that NV is a multiple of 32. Your code must run correctly for all such
values of IV, but we will measure its performance only for the 5 values shown in Table 1.

xel

*/

Test case 1 2 3 4 5
Method N 64 128 256 512 1024 | Geom. Mean
Naive r ot at e (CPE) 1474 4130 46.14 69.64 99.67
Optimized r ot at e (CPE) 9.89 1233 20.89 2501 26.56
Speedup (naive/opt) 1.49 3.35 2.21 2.78 3.75 2.58
Method N 32 64 128 256 512 | Geom. Mean
Naive snoot h (CPE) 695.85 698.55 704.82 719.44 723.18
Optimized snoot h (CPE) 107.30 109.17 109.24 121.17 122.86
Speedup (naive/opt) 6.49 6.40 6.45 5.94 5.89 6.23

Table 1: CPEs and Ratios for Optimized vs. Naive Implementations

4 |Infrastructure

We have provided support code to help you test the correctness of your implementations and measure their
performance. This section describes how to use this infrastructure. The exact details of each part of the
assignment is described in the following section.

Note: The only source files you will be modifying are r ot at e. c,r ot at e_.cache. ¢, and snoot h. c.

Versioning
You will be writing many versions of the r ot at e and snoot h routines. To help you compare the perfor-
mance of all the different versions you’ve written, we provide a way of “registering” functions.

For example, the file r ot at e. ¢ that we have provided you contains the following function:

void register _rotate functions() {
add_rotate_function(&otate, rotate_descr);

}

This function contains one or more calls to add_r ot at e f unct i on. In the above example,

add_r ot at e_f unct i on registers the function r ot at e along with a string r ot at e descr which is
an ASCII description of what the function does. See the file r ot at e. ¢ to see how to create the string
descriptions. This string can be atmost 256 characters long.

A similar function is provided in the file snoot h. c.
Driver

The source code you will write will be linked with object code that we supply into a dri ver binary. To
create this binary, you will need to execute the command

uni x> nmake driver

You will need to re-make driver each time you change the code in either r ot at e. ¢ or snoot h. c.
To test your implementations, you can then run the command:

uni x> ./driver
dri ver can be run in three different modes.

1. Default mode, in which all versions of your implementation are run.
2. File mode, in which only versions that are mentioned in an input file are run.

3. Dump mode, in which a one-line description of each version is dumped to a text file. You can then
edit this text file to keep only those versions that you’d like to test using the file mode. You can specify
whether to quit after dumping the file or if your implementations are to be run.

If run without any arguments, dri ver will run all of your versions. Other modes and options can be
specified by command-line arguments to dr i ver, as listed below:

- f FUNC_FILE: Execute only those versions specified in FUNC FILE (file mode).

- d DUMP_FILE: Dump the names of all versions to DUMP _FILE, one line to a version (dump mode).
- g: Quit after dumping version names to a dump file. To be used in tandem with - d.

- s SEED: For creating input arrays, use seed SEED for the random number generator.

- h: Print the command-line usage.

cdriver

For Part | below, you will need to use a different version of dri ver called cdri ver . Details on how to
use this are given in the description for Part I.

Team Information

Important: Before you start, you should fill in the struct in r ot at e. ¢ with information about your team
(group name, team member names and email addresses). This information is just like the one for Lab 1.
The group name will be used to display statistics on the webpage.

5 Assignment Details

Part |: Optimizing Simulated Cache Performance (15 points)

As can be observed from the section 3, both the operations, especially r ot at e, are fairly memory-intensive,
operating on images that can be of large size. Thus, a good way to optimize performance of the code is to
first focus on its cache behavior, and reduce slowdown due to memory operations.

Cache performance of a routine can be evaluated by looking at the total number of cache misses (normalized
by the size of the image matrix). We call this quantity the miss score. Formally, the miss score is defined
as #misses/N2. Since the miss score is directly proportional to the total number of misses, the lower
the miss score, better the cache performance of the implementation. In doing cache optimizations, we will
focus our attention on the L1 cache. The Pentium Il Xeon (Fish) machines that you will be running your
code on have a 16 KB 4-way set associative L1 cache with 32 byte lines.

In this part, you will only focus on optimizing cache performance of r ot at e. To help you get a feel for
how good your cache performance is, you will first use a cache simulator to compute the miss scores for
your code. In Part 11, you can see how a low miss score (most often) translates into better CPE.

The tool we use to simulate cache performance, called cachepr of , is a public-domain cache simula-
tor (htt p: / / www. cachepr of . or g/). cachepr of instruments assembly code to capture the source
(destination) addresses of read (write) instructions, and uses them to count hits and misses in a simulated
cache.

Here is your task for this part of the assignment:
1. Copyrot at e. c to anew file named r ot at e_cache. c.

2. Optimize the function r ot at e inr ot at e_cache. c to achieve as low a miss score as possible. To
do this, you will use the programs cdr i ver and m ss_score.

Using cdriver and miss_score

We have provided the object code for cdriver in the file cdri ver. o. To compile cdri ver execute the
command

uni x> make cdri ver

cdri ver takes the same command-line arguments as dr i ver and runs in the same three different modes.
You can handle different versions in the same way. However, most of this is hidden from you — you will
only explicitly run cdri ver in dump mode. All other runs are performed within the m ss _scor e script.

Suppose you copy the provided naive implementation in r ot at e. ¢ to r ot at e_cache. c (enter a suit-
able team name), compile cdr i ver using it, and run the following command:

uni x> ./cdriver -q -d dunp_file

You will observe the following output:

==cacheprof ==l evel -2 i nstrunented program startup
Teamane: Harry Q Bovik

Menber 1: Harry Bovik

Email 1: bovi k@owhere. cnu. edu

==cacheprof== |l evel -2 i nstrunented program run conplete

Test case 1 2 3 4 5
Method N 64 128 256 512 1024 | Geom. Mean
Naive r ot at e (Miss score) 0.3765 1.3129 13126 1.3125 1.3125
Optimized r ot at e (Miss score) 0.3765 0.3754 0.3751 0.3979 0.4490
Ratio (naive/opt) 1.00 3.50 3.50 3.30 2.92 2.60

Table 2: Miss scores for naive and optimized versions of r ot at e.

==cachepr of == 10 insns

==cachepr of == 6 refs (2 rd + 4)
==cachepr of == 2 msses (O0rd + 2 W)
==cachepr of == 0. 00 seconds, inf MPS

Ignore all the lines that start with ==cachepr of ==. To get a summary of the miss score, execute the

following command:
uni x> ./mss_score --file dunp_file
This prints a summary of the miss scores for each size, as shown below

Version: R Naive Row-w se Traversal of src
Dim 64 128 256 512 1024
Scor e 0.3765 1.3129 1.3126 1.3125 1.3125

Note that the script m ss_scor e needs the - - f i | e argument.

You’ll be graded on this part based on how low a miss score you are able to achieve. Miss scores achieved
after some optimization are shown in Table 2.

Note: Since this part deals with simulated cache performance, you can work on this locally, without waiting
to submit it to the timing server.

Some Advice: Don’t spend overly too much time tuning Part [; it is intended more as a warmup to Part II.
As you might find out in the course of this lab, a lower cache miss rate reported by the simulator does not
always mean better CPE.

Part I1: Optimizing Rotate (35 points)

In this part, you will optimize r ot at e to achieve as low a CPE as possible. You can use your answer to Part
| as a starting point for this part (copy r ot at e cache. c tor ot at e. ¢). You should compile dri ver
and then run it with the appropriate arguments to test your implementations.

For example, running driver with the supplied naive version (for r ot at e) generates the output shown
below:

uni x> ./driver -f rotate_func file

Teamane: Harry Q Bovik
Menber 1: Harry Bovik
Email 1: bovi k@owhere. cnu. edu

Rotate: Version = Currently set to: Naive Roww se Traversal of src:
Dim 64 128 256 512 1024 Score

CPE 14.75 40.11 48.11 71.51 97.79

Speedup 1. 00 1.00 1.00 1.00 1.00 1.00

Part I11: Optimizing Smooth (50 points)

In this part, you will optimize snoot h to achieve as low a CPE as possible.

For example, running driver with the supplied naive version (for snoot h) generates the output shown
below:

uni x> ./driver -f snmooth_func file
Teamane: Harry Q Bovik

Menber 1. Harry Bovik

Email 1: bovi k@owhere. cnu. edu

Snoot h: Version = Currently set to: Naive |Inplenentation of Snpot h:

Dim 32 64 128 256 512 Scor e
CPE 695.85 698.55 704.82 719.44 723.18
Speedup 1.00 1.00 1.00 1.00 1.00 1.00

Some advice. Look at the assembly code generated for the code in Parts Il and Ill. Focus on optimizing
the inner loop (the code that gets repeatedly executed in a loop) using the optimization tricks covered in
class. Part 11 is more compute-intensive and less memory-sensitive than Part I1, so the optimizations are of
somewhat different flavors.

Rules
You may write any code you want, as long as it satisfies the following:

e [t must be in ANSI C. You may not use any embedded assembly language statements.

e |t must not interfere with the cache simulation or time measurement mechanism. You will also be
penalized if your code prints any extraneous information.

You can only modify code inr ot at e. ¢, r ot at e_.cache. c and snoot h. c. You are allowed to define
macros, additional global variables, and other procedures in these files.

Evaluation

Your grade will be based on the following:

e Correctness: You will get NO CREDIT for buggy code! This includes code that correctly operates on
the test sizes, but incorrectly on image matrices of other sizes. As mentioned earlier, you may assume
that the image dimension is a multiple of 32.

e Cache performance: You will get full credit for Part | if your implementation is correct and achieves
a mean ratio of miss scores above a certain threshold S;. You will get partial credit for a correct
implementation that does better than the supplied naive one.

e CPE: You will get full credit for Parts Il and 111 if your implementation is correct and achieves mean
CPEs above certain thresholds Ss and S3 respectively. You will get partial credit for a correct imple-
mentation that does better than the supplied naive one.

e The thresholds Si, S2 and S5 will be posted on the lab web page by Saturday, October 13th. Mean-
while, the scores/speedups presented in Table 1 and Table 2 can be used as guidelines (the posted
thresholds will not be worse than these).

6 Epilogue

This is a pretty long handout, but don’t be discouraged by the length! The length of this handout is for
clarity, and the assignment is not difficult once you get warmed up. Start early and feel free to discuss the
assignment with the course staff. We look forward to your feedback.

You can work on the parts in any order, but we strongly recommend that you do Part I before Part 1I. The
concepts involved in Part |11 are somewhat independent of Parts | and II.

Good luck!

10

