
Network programming
 Nov 16, 2000

Topics
• Client-server model
• Sockets interface
• Echo client and se rver
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“The course that gives CMU its Zip!”
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Client-server programming model

Client + server = distributed
computing

Client & server are both
processes

Server manages a resource
Client makes a request for a

service
• request may involv e a

conversation acco rding to some
server protocol

Server provides service by
manipulating the resource
on behalf of client and then
returning a response

client serverrequest

client serverresponse

client server

process
request
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Clients
Examples of client programs

• Web browsers, ftp , telnet , ssh

How does the client find the server?
• The address of the s erver process has two pa rts: IPaddress :port

– The IP address  is a unique 32-bit p ositive integer that ide ntifies
the machine.
» dotted decimal form: 0x8002C2F2 = 12 8.2.194.242

– The port is positive intege r associated with a se rvice (and thus a
server) on that machi ne.
» port 7: echo server
» port 23: telnet server
» port 25: mail server
» port 80: web server
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Using ports to identify services

client

Web server
(port 80)

client machine

server machine 128.2 194.242

kernel

Echo server
(port 7)

service request for
128.2.194.242:80

(i.e., the Web server)

client

Web server
(port 80)

kernel

Echo server
(port 7)

service request for
128.2.194.242:7

(i.e., the echo server)
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Servers
Servers are long-running processes (daemons).

• Created at boot-time (typi cally) by the init process (process 1 )
• Run continuously until the machine is turned off.

Each server waits for requests to a rrive on a well-
known port associated with a partic ular service.
• port 7: echo server
• port 25: mail server
• port 80: http server

A machine that runs a server process is also often
referred to as a “server”.
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Server examples
Web server (port 80)

• resource: files/comp ute cycles (CGI programs)
• service: retrieves fi les and runs CGI programs on behalf of the client

FTP server (20, 21)
• resource: files
• service: stores and retrieve files

Telnet server (23)
• resource: terminal
• service: proxies a terminal on the serve r machine

Mail server (25)
• resource: email “s pool” file
• service: stores ma il messages in s pool file

See /etc/services  for a comprehensive list
of the services available on a Linux machine.



CS 213 F’00– 7 –class24. ppt

The two basic ways that 
clients and servers communicate

Connections:
• reliable two-way byte-strea m.
• looks like a file .
• akin to placing a phone call.
• slower but more robust.

Datagrams:
• data transferred in unreli able

chunks.
• can be lost or arrive out of

order.
• akin to using surfac e mail.
• faster but less robust.

We will only discuss
connections.

client server

... , Bk, Bk-1, ... , B1,  B0

B0, B1, ..., Bk-1, Bk, ...

connection

client server

dgram dgram

dgramdgram
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Linux  file I/O: open()

Must open()  a file before you can do anythi ng else.

open()  returns a small integer (file desc riptor)
• fd  < 0 indicates that a n error occurred

predefined file descriptors:
• 0: stdin
• 1: stdout
• 2: stderr

int fd ;   /* file descriptor */

if (( fd = open(“/etc/hosts”, O_RDONLY)) < 0) {
   perror (“open”);
   exit(1);
}
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Linux  file I/O: read()

read()  allows a program to access the contents of file.

read()  returns the number of bytes read from file fd .
• nbytes  < 0 indicates th at an error occurred.

• if successful, read()  places nbytes  bytes into
memory starting at address buf

char buf[512];
int fd ;       /* file descriptor */
int nbytes ;   /* number of bytes read */

/* open the file */
/* read up to 512 bytes from file fd */
if (( nbytes = read( fd, buf , sizeof (buf))) < 0) {
   perror (“read”);
   exit(1);
}
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File I/O: write()

write()  allows a program to modify file contents.

write()  returns the number of bytes written from buf
to file fd.
• nbytes  < 0 indicates th at an error occurred.

char buf[512];
int fd ;       /* file descriptor */
int nbytes ;   /* number of bytes read */

/* open the file */
/* write up to 512 bytes from buf to file fd  */
if (( nbytes = write( fd, buf, sizeof (buf)) < 0) {
   perror (“write”);
   exit(1);
}
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Berkeley Sockets Interface
Created in the early 80’s as part of the original Berkeley

distribution of Unix that contained an early version of
the Internet protocols.

Provides a user-level interface to the network.

Underlying basis for all Internet a pplications.

Based on client/server programming mode l.
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What is a socket?
A socket  is a descriptor that lets an appl ication

read/write from/to the network.
• Key idea: Linux  uses the same a bstraction for both file I/O a nd

network I/O.

Clients and servers communicate wi th each by reading
from and writing to socket descriptors.
• Using regular Linux read  and write  I/O functions.

The main difference between file I/O and socket I/O is
how the application “opens” the soc ket descriptors.
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Key data structures
Defined in /usr/include/ netinet /in.h

Internet-style sockets are characterized by a 32-bit IP
address and a port.

/* Internet address */
struct  in_addr {
  unsigned  int s_ addr; /* 32-bit IP address */ 
};

/* Internet style socket address * /
struct sockaddr _in  {
  unsigned short  int sin_family; /* Address family (A F_INET) */
  unsigned short  int sin_port;   /* Port number */
  struct  in_addr  sin_addr ;    /* IP address */
  unsigned char sin_zero[...];   / * Pad to sizeof  “struct sockaddr ” */
};
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Key data structures 
Defined in /usr/include/ netdb.h

Hostent is a DNS host entry that associates a domain
name  (e.g., cmu.edu ) with an IP addr  (128.2.35.186)
• DNS (Domain Name Service) i s a world-wide distributed data base of

domain name/IP ad dress mappings.
• Can be accessed from user programs using gethostbyname ()

[domain name to IP a ddress] or gethostbyaddr ()  [IP address to
domain name]

• Can also be acce ssed from the shell u sing nslookup  or dig.

/* Domain Name Service (DNS) host entry */
struct hostent  {
  char    *h_name;        /* offic ial name of host */
  char     **h_aliases;    /* alias list */
  int      h_addrtype ;     /* host address type */
  int      h_length;       /* length of addre ss */
  char     **h_addr _list;  /* list of addresses */
}
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Echo client: prologue

/* 
 * error - wrapper for  perror
 */
void error(char * msg) {
    perror (msg);
    exit(0);
}

int main( int argc , char **argv ) {
    /* local variable definitions */

    /* check command line argument s */
    if ( argc != 3) {
       fprintf ( stderr,"usage: %s <hostname> <port>\n" , argv[0]);
       exit(0);
    }
    hostname =  argv [1];
    portno  = atoi (argv[2]);

The client connects to a host and port passed in on the
command line.
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Echo client: socket()

The client creates a socket that will serve as the
endpoint of an Internet (AF_INET) connection
(SOCK_STREAM).

int sockfd ;  /* socket descriptor */

sockfd  = socket(AF_INET, SOCK_STREAM, 0);
if (sockfd  < 0) 
    error("ERROR opening socket");

 

socket()  returns an integer socket descriptor.
•  sockfd  < 0  indicates that an error occurred.
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Echo client: gethostbyname ()

The client builds the server’ s Internet address.

struct sockaddr _in serveraddr ; /* server address */
struct hostent  *server;        /* server DNS host entry */
char *hostname;                /* server domain name */

/* gethostbyname : get the server's DNS entry */
server =  gethostbyname (hostname);
if (server == NULL) {
    fprintf (stderr ,"ERROR, no such host as %s\n", hos tname);
    exit(0);
}

/* build the server's Internet add ress */
bzero ((char *) & serveraddr , sizeof (serveraddr ));
serveraddr .sin_family = AF_INET;
bcopy ((char *)server->h_ addr, 
      (char *)& serveraddr .sin_addr .s_addr, server->h_length);
serveraddr .sin_port =  htons (portno );
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Echo client: connect()

Then the client creates a connec tion with the server.

At this point the client is ready to be gin exchanging
messages with the server via sockfd .

int sockfd ;                    /* socket des criptor */
struct sockaddr _in serveraddr ; /* server address */

if (connect( sockfd , &serveraddr , sizeof (serveraddr )) < 0) 
      error("ERROR connecting");
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Echo client: read() , write() , close()

The client reads a message from stdin, sends it to the
server, waits for the echo, and terminates.
    /* get message line from the u ser */
    printf ("Please enter  msg: ");
    bzero (buf, BUFSIZE);
    fgets (buf, BUFSIZE,  stdin );

    /* send the message line to th e server */
    n = write( sockfd , buf , strlen( buf));
    if (n < 0)
      error("ERROR writing to sock et");

    /* print the server's reply */
    bzero (buf, BUFSIZE);
    n = read( sockfd , buf , BUFSIZE);
    if (n < 0)
      error("ERROR reading from so cket");
    printf ("Echo from server: %s",  buf);
    close( sockfd );
    return 0;
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Echo server: prologue 

/*
 * error - wrapper for  perror
 */
void error(char * msg) {
  perror (msg);
  exit(1);
}

int main( int argc , char **argv ) {
  /* local variable definitions */

  /* 
   * check command line arguments 
   */
  if ( argc != 2) {
    fprintf (stderr , "usage: %s <port>\n",  argv [0]);
    exit(1);
  }
  portno  = atoi (argv[1]);

The server listens on a port pa ssed via the command line.
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socket()  creates a socket.

socket()  returns an integer socket descriptor.
• listenfd  < 0 indicates that an error occurred.

AF_INET: indicates that the socket is as sociated with
Internet protocols.

SOCK_STREAM: selects a reliable byte s tream connection.

Echo server: socket()  

int listenfd ; /* listening socket descriptor */

listenfd  = socket(AF_INET, SOCK_STREAM, 0);
  if ( listenfd < 0) 
    error("ERROR opening socket");
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Echo server: setsockopt ()

The socket can be given so me attributes.

Handy trick that allows us to rerun the server
immediately after we kill i t.
• otherwise would have to wait about 15 secs .
• eliminates “Addres s already in use” error.
• Strongly suggest you d o this for all your serve rs to simplify

debugging.

  optval  = 1;
  setsockopt (listenfd , SOL_SOCKET, SO_REUSEADDR, 

     ( const void *)& optval  , sizeof (int));
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Echo server: init  socket address
Next, we initialize the sock et with the server’s Internet

address (IP address and port)

Binary numbers must be stored in network byte order
(big-endien )
• htonl ()  converts longs from host byte order to network by te order.
• htons ()  convers shorts from host byte order to network byte order.

  struct sockaddr _in serveraddr ; /* server's  addr */

  /* this is an Internet address * /
  bzero ((char *) & serveraddr , sizeof (serveraddr ));
  serveraddr .sin_family = AF_INET;

  /* a client can connect to any o f my IP addresses */
  serveraddr .sin_ addr.s_ addr = htonl (INADDR_ANY);

  /* this is the port to associate the socket with */
  serveraddr .sin_port =  htons ((unsigned short) portno);
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TCP echo server: bind()

bind()  associates the socket with a port.

int listenfd ;                  /* listening socket */
struct sockaddr _in serveraddr ; /* server's  addr  */

if (bind( listenfd , (struct sockaddr  *) &serveraddr ,
  sizeof (serveraddr )) < 0)

    error("ERROR on binding");
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Echo server: listen()

listen()  indicates that this socket wil l accept
connection ( connect ) requests from clients.

We’re finally ready to enter the mai n server loop that
accepts and processes clie nt connection requests.

int listenfd ;                /* listening so cket */

if (listen( listenfd , 5) < 0) /* allow 5 requests to q ueue up */ 
    error("ERROR on listen");
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Echo server: main loop
The server loops endlessly , waiting for connection

requests, then reading input from the cli ent, and
echoing the input back to the clie nt.

main() {

   /* create and configure the lis tening socket */

   while(1) {
      /* accept(): wait for a conn ection request */
      /* read(): read an input lin e from the client */
      /* write(): echo the line ba ck to the client */
      /* close(): close the connec tion */ 
   }
}
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accept()  blocks waiting for a connection request.

accept()  returns a connection socket descriptor
(connfd ) with the same properties as the l istening
descriptor ( listenfd ).
• all I/O with the client will b e done via the conn ection socket.
• useful for concurrent se rvers where parent creates a new process or

thread for each conne ction request.

accept() also fills in client’s address.

Echo server: accept()

 int listenfd ;  /* listening socket */
 int connfd ;    /* connection socket */
 int clientlen ; /* byte size of client's add ress */
 struct sockaddr _in clientaddr ; /* client  addr  */

 clientlen  = sizeof (clientaddr );
 connfd  = accept( listenfd ,
                 ( struct sockaddr  *) & clientaddr , &clientlen );
 if ( connfd < 0)
    error("ERROR on accept");
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Echo server: identifying client
The server can determine the domai n name and IP

address of the client.

struct sockaddr _in clientaddr ; /* client  addr  */
struct hostent  * hostp;         /* client DNS host ent ry */
char * hostaddrp ;               /* dotted decimal host  addr string */

hostp  = gethostbyaddr ((const  char *)& clientaddr .sin_addr .s_addr , 
  sizeof (clientaddr .sin_ addr.s_addr ), AF_INET);

if (hostp  == NULL)
  error("ERROR on  gethostbyaddr ");
hostaddrp  = inet _ntoa(clientaddr .sin_ addr);
if (hostaddrp  == NULL)
  error("ERROR on  inet_ntoa \n");
printf ("server established connection with % s (%s)\n",  

   hostp ->h_name,  hostaddrp ); 
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The server reads an ASCII input l ine from the client.

At this point, it looks just like file I/O.

Echo server: read()

int connfd ;        /* child socket */
char buf [BUFSIZE]; /* message buffer */
int n;             /* message byte size */
 
bzero (buf, BUFSIZE);
n = read( connfd , buf, BUFSIZE);
if (n < 0) 
  error("ERROR reading from socket ");
printf ("server received %d bytes: %s", n,  buf );
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Echo server: write()

Finally, the server echoes the input line back to the
client, closes the connection, and loops back to wait
for the next connection request (from possibly s ome
other client on the network).

int connfd ;        /* conection  socket */
char buf [BUFSIZE]; /* message buffer */
int n;             /* message byte size */
 
n = write( connfd , buf, strlen (buf));
if (n < 0) 
  error("ERROR writing to socket") ;

close( connfd);
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Testing the echo server with telnet
bass> echoserver 5000
server established connection with KITTYHAWK.CMCL (128.2.194.242)
server received 5 bytes: 123
server established connection with KITTYHAWK.CMCL (128.2.194.242)
server received 8 bytes: 456789

kittyhawk > telnet bass 5000
Trying 128.2.222.85...
Connected to BASS.CMCL.CS.CMU.EDU.
Escape character is '^]'.
123
123
Connection closed by foreign host.
kittyhawk > telnet bass 5000
Trying 128.2.222.85...
Connected to BASS.CMCL.CS.CMU.EDU.
Escape character is '^]'.
456789
456789
Connection closed by foreign host.
kittyhawk >
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Running the echo client and server

bass> echoserver 5000
server established connection with KITTYHAWK.CMCL (128.2.194.242)
server received 4 bytes: 123
server established connection with KITTYHAWK.CMCL (128.2.194.242)
server received 7 bytes: 456789
...

kittyhawk > echoclient bass 5000
Please enter  msg : 123
Echo from server: 123

kittyhawk > echoclient bass 5000
Please enter  msg : 456789
Echo from server: 456789
kittyhawk > 
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For more info
Complete versions of the echo clie nt and server are

available from the course web page.
• follow the “Documents” link.

You should compile and run them for yourselves to see
how they work.


