15-213

“The course that gives CMU its Zip!”

class24. ppt

Network programming
Nov 16, 2000

Topics
» Client-server model
» Sockets interface
 Echo client and se rver

Client-server programming model

Client + server = distributed
computing

Client & server are both
processes

Server manages a resource

Client makes a request for a
service

e request may involv e a
conversation acco rding to some
server protocol

Server provides service by
manipulating the resource
on behalf of client and then
returning a response

class24. ppt

client

request

response

process
request

server

LU

Uy

Clients

Examples of client programs
 Web browsers, ftp ,telnet |, ssh

How does the client find the server?

 The address of the s erver process has two pa rts: IPaddress :port

—The IP address is a unique 32-bit p ositive integer that ide ntifies
the machine.

» dotted decimal form: 0x8002C2F2 =12 8.2.194.242

—The port is positive intege r associated with a se rvice (and thus a
server) on that machi ne.

» port 7: echo server
» port 23: telnet server
» port 25: mail server
» port 80: web server

class24. ppt

Using ports to identify services

server machine 128.2 194.242

cIie_nE Ta_‘ct‘ife_ service request for
r 128.2.194.242:80
(i.e., the Web server)

Web server
(port 80)

Echo server
(port 7)

@
=5
>
=

_______ service request for
I 128.2.194.242:7
(i.e., the echo server)

Web server
(port 80)

Echo server
(port 7)

@
=5
>
=

class24. ppt

Servers

Servers are long-running processes (daemons).

» Created at boot-time (typi cally) by the init process (process 1)
* Run continuously until the machine is turned off.

Each server waits for requests to a rrive on a well-
known port associated with a partic ular service.
e port 7: echo server
e port 25: mail server
» port 80: http server

A machine that runs a server process Is also often
referred to as a “server”.

class24. ppt

Server examples
Web server (port 80)

» resource: files/comp ute cycles (CGI programs)
« service: retrieves fi les and runs CGIl programs on behalf of the client

FTP server (20, 21)

e resource: files
e service: stores and retrieve files

Telnet server (23)
e resource: terminal
e service: proxies a terminal on the serve r machine

Mail server (25)

» resource: email “s pool” file
e service: stores ma il messages in s pool file

See /etc/services for a comprehensive list

of the services available on a Linux machine.
class24. ppt

The two basic ways that
clients and servers communicate

Connections:
. vB Bygy ooy By, By

 reliable two-way byte-strea m. : >
. . connection
* looks like a file . 4

« akin to placing a phone call. Bo: Byy ooy Biets Bio -
» slower but more robust.

Datagrams:
o data transferred in unreli able
chunks. N
« can be lost or arrive out of dgram dgﬁﬁn

<

 akin to using surfac e mail.
e faster but less robust.

We will only discuss

connections.
class24. ppt

dgram dgram

Linux file I/0O: open()

Must open() a file before you can do anythi ng else.

intfd ; /*file descriptor */

if ((fd =open(“/etc/hosts”, O_RDONLY)) < 0) {
perror (“open”);
exit(1);

}

open() returns a small integer (file desc riptor)
« fd < 0 indicates that a n error occurred

predefined file descriptors:
e O: stdin
« 1: stdout
e 2:stderr

class24. ppt

Linux file 1/O: read()

read() allows a program to access the contents of file.

char buf[512];
intfd [* file descriptor */
int nbytes ; /* number of bytes read */

* open the file */

[* read up to 512 bytes from file fd */

if ((nbytes =read(fd, buf |, sizeof (buf))) <0){
perror (“read”);
exit(1);

}
read() returns the number of bytes read from file fd .
 nbytes < 0 indicates th at an error occurred.

o if successful, read() places nbytes bytes into
memory starting at address buf

class24. ppt

File 1/O: write()

write() allows a program to modify file

contents.

char buf[512];
intfd [* file descriptor */
int nbytes ; /* number of bytes read */

[* open the file */
[* write up to 512 bytes from buf to file fd */
if ((nbytes = write(fd, buf, sizeof (buf)) < 0) {
perror (“write™);
exit(1);

}

write() returns the number of bytes written from

to file fd.

 nbytes < 0 indicates th at an error occurred.

class24. ppt

buf

Berkeley Sockets Interface

Created in the early 80’s as part of the original Berkeley
distribution of Unix that contained an early version of
the Internet protocols.

Provides a user-level interface to the network.
Underlying basis for all Interneta pplications.

Based on client/server programming mode |

class24. ppt

What is a socket?

A socket is a descriptor that lets an appl ication
read/write from/to the network.

« Key idea: Linux uses the same a bstraction for both file /O a nd
network 1/0O.

Clients and servers communicate wi th each by reading
from and writing to socket descriptors.
« Using regular Linux read and write 1/O functions.

The main difference between file 1/0 and socket I/O is
how the application “opens” the soc ket descriptors.

class24. ppt

Key data structures

Defined in /usr/include/ netinet /in.h

[* Internet address */
struct in_addr {
unsigned ints_ addr; /* 32-bit IP address */

¢
* Internet style socket address * /
struct sockaddr _in {
unsigned short int sin_family; /* Address family (A
unsigned short int sin_port; /* Port number */
struct in_addr sin_addr ; [* IP address */
unsigned char sin_zero[...]; / * Pad to sizeof
¢

F_INET) */

“struct sockaddr

” */

Internet-style sockets are characterized
address and a port.

class24. ppt

by a 32-bit IP

Key data structures

Defined in /usr/include/ netdb.h

/* Domain Name Service (DNS) host entry */

struct hostent {
char *h_name; /* offic lal name of host */
char **h_aliases; /* alias list */
int h_addrtype ; [* host address type */
int h_length; * length of addre ss */
char **h_addr _list; /* list of addresses */

}

Hostent is a DNS host entry that associates a domain
name (e.g., cmu.edu) with an IP addr (128.2.35.186)

« DNS (Domain Name Service) i s a world-wide distributed data base of
domain name/IP ad dress mappings.

 Can be accessed from user programs using gethostbyname ()
[domain name to IP a ddress] or gethostbyaddr () [IP address to
domain name]

e Can also be acce ssed from the shell u sing nslookup or dig.

class24. ppt

Echo client: prologue

The client connects to a host and port passed in on the
command line.

/*
* error - wrapper for perror
*/
void error(char * msQq) {
perror (msQ);
exit(0);
}
intmain(intargc , char **argv) {
/* local variable definitions */
[* check command line argument s */
if (argc '=3) {
fprintf (stderr,"usage: %s <hostname> <port>\n" , argv[0]);
exit(0);
}
hostname = argv [1];
portno = atoi (argv[2));

class24. ppt

Echo client: socket()

The client creates a socket that will serve as the

endpoint of an Internet (AF_INET) connection
(SOCK_STREAM).

int sockfd ; [* socket descriptor */

sockfd = socket(AF_INET, SOCK_STREAM, 0);
if (sockfd <0)

error("ERROR opening socket");

socket() returns an integer socket descriptor.
 sockfd <0 indicates that an error occurred.

class24. ppt

Echo client: gethostbyname ()

The client builds the server’ s Internet address.

struct sockaddr _in serveraddr ; [* server address */
struct hostent *server; [* server DNS host entry */
char *hostname; /* server domain name */
[* gethostbyname . get the server's DNS entry */
server = gethostbyname (hostname);
if (server == NULL) {
fprintf (stderr ,"ERROR, no such host as %s\n", hos tname);
exit(0);
}
/* build the server's Internet add ress */
bzero ((char *) & serveraddr , sizeof (serveraddr));
serveraddr .sin_family = AF_INET;
bcopy ((char *)server->h__ addr,
(char *)& serveraddr .sin_addr .s_addr, server->h_length);
serveraddr .sin_port = htons (portno);

class24. ppt

Echo client. connect()

Then the client creates a connec tion with the server.

int sockfd ; [* socket des criptor */
struct sockaddr _in serveraddr ; [* server address */
if (connect(sockfd , &serveraddr , Sizeof (serveraddr))<0)

error("ERROR connecting");

At this point the client is ready to be gin exchanging
messages with the server via sockfd

class24. ppt

Echo client: read() , write() , close()

The client reads a message from stdin, sends it to the
server, waits for the echo, and terminates.

[* get message line from the u ser */
printf ("Please enter msg: ");

bzero (buf, BUFSIZE);

fgets (buf, BUFSIZE, stdin);

[* send the message line to th e server */
n = write(sockfd , buf , strlen(buf));
if (n<0)

error("ERROR writing to sock et");

[* print the server's reply */
bzero (buf, BUFSIZE);
n = read(sockfd , buf , BUFSIZE);

if (n<0)

error("ERROR reading from so cket");
printf ("Echo from server: %s", buf);
close(sockfd);
return O;

class24. ppt

Echo server: prologue

The server listens on a port pa ssed via the command line.

/*
* error - wrapper for perror
*/
void error(char * msq) {
perror (msQ);
exit(1);
}
intmain(intargc , char **argv) {

/* local variable definitions */

/*

* check command line arguments

*/

if (argc '=2) {
fprintf (stderr , "usage: %s <port>\n", argv [0]);
exit(1);

}

portno =atoi (argv[l));

class24. ppt

Echo server: socket()

socket() creates a socket.

int listenfd ; [* listening socket descriptor */

listenfd = socket(AF_INET, SOCK_STREAM, 0);
if (listenfd < 0)
error("ERROR opening socket");

socket() returns an integer socket descriptor.
* listenfd < 0 indicates that an error occurred.

AF _INET: indicates that the socket is as sociated with
Internet protocols.

SOCK_STREAM: selects a reliable byte s tream connection.

class24. ppt

Echo server: setsockopt ()

The socket can be given so me attributes.

optval =1;
setsockopt (listenfd , SOL_SOCKET, SO _REUSEADDR,
(const void *)& optval , sizeof (int));

Handy trick that allows us to rerunthe server
iImmediately after we kill i t.
« otherwise would have to wait about 15 secs.
« eliminates “Addres s already in use” error.

« Strongly suggest you d o this for all your serve rs to simplify
debugging.

class24. ppt

Echo server: Init socket address

Next, we Initialize the sock et with the server’s Internet
address (IP address and port)

struct sockaddr _in serveraddr ; [* server's addr */

[* this is an Internet address * /
bzero ((char?*) & serveraddr , sizeof (serveraddr));
serveraddr .Ssin_family = AF_INET,;

[* a client can connect to any o f my IP addresses */
serveraddr .Sin_ addr.s_ addr = htonl (INADDR_ANY);

[* this is the port to associate the socket with */
serveraddr .Sin_port = htons ((unsigned short) portno);

Binary numbers must be stored in network byte order
(big-endien)
 htonl () converts longs from host byte order to network by te order.
* htons () convers shorts from host byte order to network byte order.

class24. ppt

TCP echo server: bind()

bind() associates the socket with a port.

int listenfd ; /* listening socket */
struct sockaddr _in serveraddr ; [* server's addr */
if (bind(listenfd , (struct sockaddr *) &serveraddr

sizeof (serveraddr))<0)
error("ERROR on binding");

class24. ppt

Echo server: listen()

listen() Indicates that this socket wil | accept
connection (connect) requests from clients.

int listenfd ; /* listening so cket */

if (listen(listenfd , 5) <0) /* allow 5 requests to g ueue up */
error("ERROR on listen");

We’'re finally ready to enter the mai n server loop that
accepts and processes clie nt connection requests.

class24. ppt

Echo server: main loop

The server loops endlessly , waiting for connection
requests, then reading input from the cli ent, and
echoing the input back to the clie nt.

main() {
[* create and configure the lis tening socket */
while(1) {
[* accept(): wait for a conn ection request */
[* read(): read an input lin e from the client */
* write(): echo the line ba ck to the client */
/* close(): close the connec tion */
}
}

class24. ppt

Echo server. accept()

accept() blocks waiting for a connection request.

int listenfd ; [* listening socket */

int connfd ; [* connection socket */

int clientlen ; I* byte size of client's add ress */
struct sockaddr _in clientaddr ; [* client addr */

clientlen = sizeof (clientaddr);
connfd = accept(listenfd
(struct sockaddr *) & clientaddr , &clientlen);
if (connfd < 0)
error("ERROR on accept");

accept() returns a connection socket descriptor
(connfd) with the same properties as the | istening
descriptor (listenfd).
« all I/O with the client will b e done via the conn ection socket.

» useful for concurrent se rvers where parent creates a new process or
thread for each conne ction request.

accept() also fills in client's address.
class24. ppt

Echo server: identifying client

The server can determine the domal n name and IP
address of the client.

struct sockaddr _in clientaddr ; [* client addr */
struct hostent * hostp; /[* client DNS host ent ry */
char * hostaddrp ; [* dotted decimal host addr string */

hostp = gethostbyaddr ((const char*)& clientaddr .sin_addr .s addr |,
sizeof (clientaddr .Sin_ addr.s_addr), AF_INET);

if (hostp == NULL)
error("ERROR on gethostbyaddr ");
hostaddrp =inet _ntoa(clientaddr .Sin_ addr);
if (hostaddrp == NULL)
error("ERROR on inet_ntoa \n");
printf ("server established connection with % S (%s)\n",

hostp ->h_name, hostaddrp);

class24. ppt

Echo server: read()

The server reads an ASCII input | ine from the client.

int connfd [* child socket */
char buf [BUFSIZE]; /* message buffer */
int n; [* message byte size */

bzero (buf, BUFSIZE);
n=read(connfd , buf, BUFSIZE);
if (n<0)
error("ERROR reading from socket ");
printf ("server received %d bytes: %s", n, buf);

At this point, it looks just like file 1/O.

class24. ppt

Echo server: write()

Finally, the server echoes
client, closes the connection,

for the next connection request (from possibly s

other client on the network).

the input line back to the

and loops back to wait
ome

; [* conection
[BUFSIZE]; /* message buffer */
[* message byte

int connfd
char buf
int n;
n = write(connfd , buf, strlen
if (n<0)

error("ERROR writing to socket")

(buf));

close(connfd);

socket */

size */

class24. ppt

Testing the echo server with telnet

bass> echoserver 5000
server established connection with
server received 5 bytes: 123
server established connection with
server received 8 bytes: 456789

kittynawk > tel net bass 5000
Trying 128.2.222.85...

Connected to BASS.CMCL.CS.CMU.EDU.

Escape character is ']

123

123

Connection closed by foreign host.
kittynawk > tel net bass 5000
Trying 128.2.222.85...

Connected to BASS.CMCL.CS.CMU.EDU.

Escape character is "]

456789

456789

Connection closed by foreign host.
kittyhawk >

KITTYHAWK.CMCL (128.2.194.242)

KITTYHAWK.CMCL (128.2.194.242)

class24. ppt

Running the echo client and server

bass> echoserver 5000

server established connection with KITTYHAWK.CMCL (128.2.194.242)
server received 4 bytes: 123
server established connection with KITTYHAWK.CMCL (128.2.194.242)

server received 7 bytes: 456789

kittyhawk > echocl i ent bass 5000
Please enter msg : 123
Echo from server: 123

kittyhawk > echocl i ent bass 5000
Please enter msg : 456789

Echo from server: 456789

kittyhawk >

class24. ppt

For more Info

Complete versions of the echo clie nt and server are
available from the course web page.

e follow the “Documents” link.

You should compile and run them for yourselves to see
how they work.

class24. ppt

