
Network programming
 Nov 16, 2000

Topics
• Client-server model
• Sockets interface
• Echo client and se rver

class24. ppt

15-213
“The course that gives CMU its Zip!”

CS 213 F’00– 2 –class24. ppt

Client-server programming model

Client + server = distributed
computing

Client & server are both
processes

Server manages a resource
Client makes a request for a

service
• request may involv e a

conversation acco rding to some
server protocol

Server provides service by
manipulating the resource
on behalf of client and then
returning a response

client serverrequest

client serverresponse

client server

process
request

CS 213 F’00– 3 –class24. ppt

Clients
Examples of client programs

• Web browsers, ftp , telnet , ssh

How does the client find the server?
• The address of the s erver process has two pa rts: IPaddress :port

– The IP address is a unique 32-bit p ositive integer that ide ntifies
the machine.
» dotted decimal form: 0x8002C2F2 = 12 8.2.194.242

– The port is positive intege r associated with a se rvice (and thus a
server) on that machi ne.
» port 7: echo server
» port 23: telnet server
» port 25: mail server
» port 80: web server

CS 213 F’00– 4 –class24. ppt

Using ports to identify services

client

Web server
(port 80)

client machine

server machine 128.2 194.242

kernel

Echo server
(port 7)

service request for
128.2.194.242:80

(i.e., the Web server)

client

Web server
(port 80)

kernel

Echo server
(port 7)

service request for
128.2.194.242:7

(i.e., the echo server)

CS 213 F’00– 5 –class24. ppt

Servers
Servers are long-running processes (daemons).

• Created at boot-time (typi cally) by the init process (process 1)
• Run continuously until the machine is turned off.

Each server waits for requests to a rrive on a well-
known port associated with a partic ular service.
• port 7: echo server
• port 25: mail server
• port 80: http server

A machine that runs a server process is also often
referred to as a “server”.

CS 213 F’00– 6 –class24. ppt

Server examples
Web server (port 80)

• resource: files/comp ute cycles (CGI programs)
• service: retrieves fi les and runs CGI programs on behalf of the client

FTP server (20, 21)
• resource: files
• service: stores and retrieve files

Telnet server (23)
• resource: terminal
• service: proxies a terminal on the serve r machine

Mail server (25)
• resource: email “s pool” file
• service: stores ma il messages in s pool file

See /etc/services for a comprehensive list
of the services available on a Linux machine.

CS 213 F’00– 7 –class24. ppt

The two basic ways that
clients and servers communicate

Connections:
• reliable two-way byte-strea m.
• looks like a file .
• akin to placing a phone call.
• slower but more robust.

Datagrams:
• data transferred in unreli able

chunks.
• can be lost or arrive out of

order.
• akin to using surfac e mail.
• faster but less robust.

We will only discuss
connections.

client server

... , Bk, Bk-1, ... , B1, B0

B0, B1, ..., Bk-1, Bk, ...

connection

client server

dgram dgram

dgramdgram

CS 213 F’00– 8 –class24. ppt

Linux file I/O: open()

Must open() a file before you can do anythi ng else.

open() returns a small integer (file desc riptor)
• fd < 0 indicates that a n error occurred

predefined file descriptors:
• 0: stdin
• 1: stdout
• 2: stderr

int fd ; /* file descriptor */

if ((fd = open(“/etc/hosts”, O_RDONLY)) < 0) {
 perror (“open”);
 exit(1);
}

CS 213 F’00– 9 –class24. ppt

Linux file I/O: read()

read() allows a program to access the contents of file.

read() returns the number of bytes read from file fd .
• nbytes < 0 indicates th at an error occurred.

• if successful, read() places nbytes bytes into
memory starting at address buf

char buf[512];
int fd ; /* file descriptor */
int nbytes ; /* number of bytes read */

/* open the file */
/* read up to 512 bytes from file fd */
if ((nbytes = read(fd, buf , sizeof (buf))) < 0) {
 perror (“read”);
 exit(1);
}

CS 213 F’00– 10 –class24. ppt

File I/O: write()

write() allows a program to modify file contents.

write() returns the number of bytes written from buf
to file fd.
• nbytes < 0 indicates th at an error occurred.

char buf[512];
int fd ; /* file descriptor */
int nbytes ; /* number of bytes read */

/* open the file */
/* write up to 512 bytes from buf to file fd */
if ((nbytes = write(fd, buf, sizeof (buf)) < 0) {
 perror (“write”);
 exit(1);
}

CS 213 F’00– 11 –class24. ppt

Berkeley Sockets Interface
Created in the early 80’s as part of the original Berkeley

distribution of Unix that contained an early version of
the Internet protocols.

Provides a user-level interface to the network.

Underlying basis for all Internet a pplications.

Based on client/server programming mode l.

CS 213 F’00– 12 –class24. ppt

What is a socket?
A socket is a descriptor that lets an appl ication

read/write from/to the network.
• Key idea: Linux uses the same a bstraction for both file I/O a nd

network I/O.

Clients and servers communicate wi th each by reading
from and writing to socket descriptors.
• Using regular Linux read and write I/O functions.

The main difference between file I/O and socket I/O is
how the application “opens” the soc ket descriptors.

CS 213 F’00– 13 –class24. ppt

Key data structures
Defined in /usr/include/ netinet /in.h

Internet-style sockets are characterized by a 32-bit IP
address and a port.

/* Internet address */
struct in_addr {
 unsigned int s_ addr; /* 32-bit IP address */
};

/* Internet style socket address * /
struct sockaddr _in {
 unsigned short int sin_family; /* Address family (A F_INET) */
 unsigned short int sin_port; /* Port number */
 struct in_addr sin_addr ; /* IP address */
 unsigned char sin_zero[...]; / * Pad to sizeof “struct sockaddr ” */
};

CS 213 F’00– 14 –class24. ppt

Key data structures
Defined in /usr/include/ netdb.h

Hostent is a DNS host entry that associates a domain
name (e.g., cmu.edu) with an IP addr (128.2.35.186)
• DNS (Domain Name Service) i s a world-wide distributed data base of

domain name/IP ad dress mappings.
• Can be accessed from user programs using gethostbyname ()

[domain name to IP a ddress] or gethostbyaddr () [IP address to
domain name]

• Can also be acce ssed from the shell u sing nslookup or dig.

/* Domain Name Service (DNS) host entry */
struct hostent {
 char *h_name; /* offic ial name of host */
 char **h_aliases; /* alias list */
 int h_addrtype ; /* host address type */
 int h_length; /* length of addre ss */
 char **h_addr _list; /* list of addresses */
}

CS 213 F’00– 15 –class24. ppt

Echo client: prologue

/*
 * error - wrapper for perror
 */
void error(char * msg) {
 perror (msg);
 exit(0);
}

int main(int argc , char **argv) {
 /* local variable definitions */

 /* check command line argument s */
 if (argc != 3) {
 fprintf (stderr,"usage: %s <hostname> <port>\n" , argv[0]);
 exit(0);
 }
 hostname = argv [1];
 portno = atoi (argv[2]);

The client connects to a host and port passed in on the
command line.

CS 213 F’00– 16 –class24. ppt

Echo client: socket()

The client creates a socket that will serve as the
endpoint of an Internet (AF_INET) connection
(SOCK_STREAM).

int sockfd ; /* socket descriptor */

sockfd = socket(AF_INET, SOCK_STREAM, 0);
if (sockfd < 0)
 error("ERROR opening socket");

socket() returns an integer socket descriptor.
• sockfd < 0 indicates that an error occurred.

CS 213 F’00– 17 –class24. ppt

Echo client: gethostbyname ()

The client builds the server’ s Internet address.

struct sockaddr _in serveraddr ; /* server address */
struct hostent *server; /* server DNS host entry */
char *hostname; /* server domain name */

/* gethostbyname : get the server's DNS entry */
server = gethostbyname (hostname);
if (server == NULL) {
 fprintf (stderr ,"ERROR, no such host as %s\n", hos tname);
 exit(0);
}

/* build the server's Internet add ress */
bzero ((char *) & serveraddr , sizeof (serveraddr));
serveraddr .sin_family = AF_INET;
bcopy ((char *)server->h_ addr,
 (char *)& serveraddr .sin_addr .s_addr, server->h_length);
serveraddr .sin_port = htons (portno);

CS 213 F’00– 18 –class24. ppt

Echo client: connect()

Then the client creates a connec tion with the server.

At this point the client is ready to be gin exchanging
messages with the server via sockfd .

int sockfd ; /* socket des criptor */
struct sockaddr _in serveraddr ; /* server address */

if (connect(sockfd , &serveraddr , sizeof (serveraddr)) < 0)
 error("ERROR connecting");

CS 213 F’00– 19 –class24. ppt

Echo client: read() , write() , close()

The client reads a message from stdin, sends it to the
server, waits for the echo, and terminates.
 /* get message line from the u ser */
 printf ("Please enter msg: ");
 bzero (buf, BUFSIZE);
 fgets (buf, BUFSIZE, stdin);

 /* send the message line to th e server */
 n = write(sockfd , buf , strlen(buf));
 if (n < 0)
 error("ERROR writing to sock et");

 /* print the server's reply */
 bzero (buf, BUFSIZE);
 n = read(sockfd , buf , BUFSIZE);
 if (n < 0)
 error("ERROR reading from so cket");
 printf ("Echo from server: %s", buf);
 close(sockfd);
 return 0;

CS 213 F’00– 20 –class24. ppt

Echo server: prologue

/*
 * error - wrapper for perror
 */
void error(char * msg) {
 perror (msg);
 exit(1);
}

int main(int argc , char **argv) {
 /* local variable definitions */

 /*
 * check command line arguments
 */
 if (argc != 2) {
 fprintf (stderr , "usage: %s <port>\n", argv [0]);
 exit(1);
 }
 portno = atoi (argv[1]);

The server listens on a port pa ssed via the command line.

CS 213 F’00– 21 –class24. ppt

socket() creates a socket.

socket() returns an integer socket descriptor.
• listenfd < 0 indicates that an error occurred.

AF_INET: indicates that the socket is as sociated with
Internet protocols.

SOCK_STREAM: selects a reliable byte s tream connection.

Echo server: socket()

int listenfd ; /* listening socket descriptor */

listenfd = socket(AF_INET, SOCK_STREAM, 0);
 if (listenfd < 0)
 error("ERROR opening socket");

CS 213 F’00– 22 –class24. ppt

Echo server: setsockopt ()

The socket can be given so me attributes.

Handy trick that allows us to rerun the server
immediately after we kill i t.
• otherwise would have to wait about 15 secs .
• eliminates “Addres s already in use” error.
• Strongly suggest you d o this for all your serve rs to simplify

debugging.

 optval = 1;
 setsockopt (listenfd , SOL_SOCKET, SO_REUSEADDR,

 (const void *)& optval , sizeof (int));

CS 213 F’00– 23 –class24. ppt

Echo server: init socket address
Next, we initialize the sock et with the server’s Internet

address (IP address and port)

Binary numbers must be stored in network byte order
(big-endien)
• htonl () converts longs from host byte order to network by te order.
• htons () convers shorts from host byte order to network byte order.

 struct sockaddr _in serveraddr ; /* server's addr */

 /* this is an Internet address * /
 bzero ((char *) & serveraddr , sizeof (serveraddr));
 serveraddr .sin_family = AF_INET;

 /* a client can connect to any o f my IP addresses */
 serveraddr .sin_ addr.s_ addr = htonl (INADDR_ANY);

 /* this is the port to associate the socket with */
 serveraddr .sin_port = htons ((unsigned short) portno);

CS 213 F’00– 24 –class24. ppt

TCP echo server: bind()

bind() associates the socket with a port.

int listenfd ; /* listening socket */
struct sockaddr _in serveraddr ; /* server's addr */

if (bind(listenfd , (struct sockaddr *) &serveraddr ,
 sizeof (serveraddr)) < 0)

 error("ERROR on binding");

CS 213 F’00– 25 –class24. ppt

Echo server: listen()

listen() indicates that this socket wil l accept
connection (connect) requests from clients.

We’re finally ready to enter the mai n server loop that
accepts and processes clie nt connection requests.

int listenfd ; /* listening so cket */

if (listen(listenfd , 5) < 0) /* allow 5 requests to q ueue up */
 error("ERROR on listen");

CS 213 F’00– 26 –class24. ppt

Echo server: main loop
The server loops endlessly , waiting for connection

requests, then reading input from the cli ent, and
echoing the input back to the clie nt.

main() {

 /* create and configure the lis tening socket */

 while(1) {
 /* accept(): wait for a conn ection request */
 /* read(): read an input lin e from the client */
 /* write(): echo the line ba ck to the client */
 /* close(): close the connec tion */
 }
}

CS 213 F’00– 27 –class24. ppt

accept() blocks waiting for a connection request.

accept() returns a connection socket descriptor
(connfd) with the same properties as the l istening
descriptor (listenfd).
• all I/O with the client will b e done via the conn ection socket.
• useful for concurrent se rvers where parent creates a new process or

thread for each conne ction request.

accept() also fills in client’s address.

Echo server: accept()

 int listenfd ; /* listening socket */
 int connfd ; /* connection socket */
 int clientlen ; /* byte size of client's add ress */
 struct sockaddr _in clientaddr ; /* client addr */

 clientlen = sizeof (clientaddr);
 connfd = accept(listenfd ,
 (struct sockaddr *) & clientaddr , &clientlen);
 if (connfd < 0)
 error("ERROR on accept");

CS 213 F’00– 28 –class24. ppt

Echo server: identifying client
The server can determine the domai n name and IP

address of the client.

struct sockaddr _in clientaddr ; /* client addr */
struct hostent * hostp; /* client DNS host ent ry */
char * hostaddrp ; /* dotted decimal host addr string */

hostp = gethostbyaddr ((const char *)& clientaddr .sin_addr .s_addr ,
 sizeof (clientaddr .sin_ addr.s_addr), AF_INET);

if (hostp == NULL)
 error("ERROR on gethostbyaddr ");
hostaddrp = inet _ntoa(clientaddr .sin_ addr);
if (hostaddrp == NULL)
 error("ERROR on inet_ntoa \n");
printf ("server established connection with % s (%s)\n",

 hostp ->h_name, hostaddrp);

CS 213 F’00– 29 –class24. ppt

The server reads an ASCII input l ine from the client.

At this point, it looks just like file I/O.

Echo server: read()

int connfd ; /* child socket */
char buf [BUFSIZE]; /* message buffer */
int n; /* message byte size */

bzero (buf, BUFSIZE);
n = read(connfd , buf, BUFSIZE);
if (n < 0)
 error("ERROR reading from socket ");
printf ("server received %d bytes: %s", n, buf);

CS 213 F’00– 30 –class24. ppt

Echo server: write()

Finally, the server echoes the input line back to the
client, closes the connection, and loops back to wait
for the next connection request (from possibly s ome
other client on the network).

int connfd ; /* conection socket */
char buf [BUFSIZE]; /* message buffer */
int n; /* message byte size */

n = write(connfd , buf, strlen (buf));
if (n < 0)
 error("ERROR writing to socket") ;

close(connfd);

CS 213 F’00– 31 –class24. ppt

Testing the echo server with telnet
bass> echoserver 5000
server established connection with KITTYHAWK.CMCL (128.2.194.242)
server received 5 bytes: 123
server established connection with KITTYHAWK.CMCL (128.2.194.242)
server received 8 bytes: 456789

kittyhawk > telnet bass 5000
Trying 128.2.222.85...
Connected to BASS.CMCL.CS.CMU.EDU.
Escape character is '^]'.
123
123
Connection closed by foreign host.
kittyhawk > telnet bass 5000
Trying 128.2.222.85...
Connected to BASS.CMCL.CS.CMU.EDU.
Escape character is '^]'.
456789
456789
Connection closed by foreign host.
kittyhawk >

CS 213 F’00– 32 –class24. ppt

Running the echo client and server

bass> echoserver 5000
server established connection with KITTYHAWK.CMCL (128.2.194.242)
server received 4 bytes: 123
server established connection with KITTYHAWK.CMCL (128.2.194.242)
server received 7 bytes: 456789
...

kittyhawk > echoclient bass 5000
Please enter msg : 123
Echo from server: 123

kittyhawk > echoclient bass 5000
Please enter msg : 456789
Echo from server: 456789
kittyhawk >

CS 213 F’00– 33 –class24. ppt

For more info
Complete versions of the echo clie nt and server are

available from the course web page.
• follow the “Documents” link.

You should compile and run them for yourselves to see
how they work.

