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Topics
» Client-server model
» Sockets interface
 Echo client and se rver



Client-server programming model

Client + server = distributed
computing

Client & server are both
processes

Server manages a resource

Client makes a request for a
service

e request may involv e a
conversation acco rding to some
server protocol

Server provides service by
manipulating the resource
on behalf of client and then
returning a response
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Clients

Examples of client programs
 Web browsers, ftp ,telnet |, ssh

How does the client find the server?

 The address of the s erver process has two pa rts: IPaddress :port

—The IP address is a unique 32-bit p ositive integer that ide ntifies
the machine.

» dotted decimal form: 0x8002C2F2 =12 8.2.194.242

—The port is positive intege r associated with a se rvice (and thus a
server) on that machi ne.

» port 7: echo server
» port 23: telnet server
» port 25: mail server
» port 80: web server
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Using ports to identify services

server machine 128.2 194.242

cIie_nE Ta_‘ct‘ife_ service request for
r 128.2.194.242:80
(i.e., the Web server)

Web server
(port 80)

Echo server
(port 7)

@
=5
>
=

_______ service request for
I 128.2.194.242:7
(i.e., the echo server)

Web server
(port 80)

Echo server
(port 7)

@
=5
>
=
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Servers

Servers are long-running processes (daemons).

» Created at boot-time (typi cally) by the init process (process 1 )
* Run continuously until  the machine is turned off.

Each server waits for requests to a rrive on a well-
known port associated with a partic  ular service.
e port 7: echo server
e port 25: mail server
» port 80: http server

A machine that runs a server process Is also often
referred to as a “server”.
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Server examples
Web server (port 80)

» resource: files/comp ute cycles (CGI programs)
« service: retrieves fi les and runs CGIl programs on  behalf of the client

FTP server (20, 21)

e resource: files
e service: stores and retrieve files

Telnet server (23)
e resource: terminal
e service: proxies a terminal on the serve r machine

Mail server (25)

» resource: email “s pool” file
e service: stores ma il messages in s pool file

See /etc/services for a comprehensive list

of the services available on a Linux machine.
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The two basic ways that
clients and servers communicate

Connections:
. vB Bygy ooy By, By

 reliable two-way byte-strea m. : >
. . connection
* looks like a file . 4

« akin to placing a phone call. Bo: Byy ooy Biets Bio -
» slower but more robust.

Datagrams:
o data transferred in unreli able
chunks. N
« can be lost or arrive out of dgram dgﬁﬁn

<

 akin to using surfac e mail.
e faster but less robust.

We will only discuss

connections.
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Linux file I/0O: open()

Must open() a file before you can do anythi ng else.

intfd ; /*file descriptor */

if (( fd =open(“/etc/hosts”, O_RDONLY)) < 0) {
perror (“open”);
exit(1);

}

open() returns a small integer (file desc riptor)
« fd < 0 indicates that a n error occurred

predefined file descriptors:
e O: stdin
« 1: stdout
e 2:stderr
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Linux file 1/O: read()

read() allows a program to access the contents of file.

char buf[512];
intfd [* file descriptor */
int nbytes  ; /* number of bytes read */

* open the file */

[* read up to 512 bytes from file fd */

if (( nbytes =read( fd, buf |, sizeof (buf))) <0){
perror (“read”);
exit(1);

}
read() returns the number of bytes read from file  fd .
 nbytes < 0 indicates th at an error occurred.

o if successful, read() places nbytes bytes into
memory starting at address  buf
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File 1/O: write()

write()  allows a program to modify file

contents.

char buf[512];
intfd [* file descriptor */
int nbytes  ; /* number of bytes read */

[* open the file */
[* write up to 512 bytes from buf to file fd */
if (( nbytes = write( fd, buf, sizeof (buf)) < 0) {
perror (“write™);
exit(1);

}

write()  returns the number of bytes written from

to file fd.

 nbytes < 0 indicates th at an error occurred.
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Berkeley Sockets Interface

Created in the early 80’s as part of the original Berkeley
distribution of Unix that contained an early version of
the Internet protocols.

Provides a user-level interface to the network.
Underlying basis for all Interneta  pplications.

Based on client/server programming mode |
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What is a socket?

A socket is a descriptor that lets an appl ication
read/write from/to the network.

« Key idea: Linux uses the same a bstraction for both file /O a nd
network 1/0O.

Clients and servers communicate wi  th each by reading
from and writing to socket descriptors.
« Using regular Linux read and write 1/O functions.

The main difference between file 1/0 and socket I/O is
how the application “opens” the soc ket descriptors.
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Key data structures

Defined in /usr/include/ netinet /in.h

[* Internet address */
struct in_addr {
unsigned ints_ addr; /* 32-bit IP address */

¢
* Internet style socket address * /
struct sockaddr _in {
unsigned short int sin_family; /* Address family (A
unsigned short int sin_port; /* Port number */
struct in_addr sin_addr ; [* IP address */
unsigned char sin_zero[...]; / * Pad to sizeof
¢

F_INET) */

“struct sockaddr

” */

Internet-style sockets are characterized
address and a port.
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Key data structures

Defined in /usr/include/ netdb.h

/* Domain Name Service (DNS) host entry */

struct hostent {
char *h_name; /* offic lal name of host */
char **h_aliases; /* alias list */
int h_addrtype ;  [* host address type */
int h_length; * length of addre ss */
char **h_addr _list; /* list of addresses */

}

Hostent is a DNS host entry that associates a domain
name (e.g., cmu.edu ) with an IP addr (128.2.35.186)

« DNS (Domain Name Service) i s a world-wide distributed data base of
domain name/IP ad dress mappings.

 Can be accessed from user programs using gethostbyname ()
[domain name to IP a ddress] or gethostbyaddr () [IP address to
domain name]

e Can also be acce ssed from the shell u sing nslookup or dig.
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Echo client: prologue

The client connects to a host and  port passed in on the
command line.

/*
* error - wrapper for perror
*/
void error(char * msQq) {
perror (msQ);
exit(0);
}
intmain(  intargc , char **argv ) {
/* local variable definitions */
[* check command line argument s */
if ( argc '=3) {
fprintf ( stderr,"usage: %s <hostname> <port>\n" , argv[0]);
exit(0);
}
hostname = argv [1];
portno = atoi  (argv[2));
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Echo client: socket()

The client creates a socket that will serve as the

endpoint of an Internet (AF_INET) connection
(SOCK_STREAM).

int sockfd ; [* socket descriptor */

sockfd = socket(AF_INET, SOCK_STREAM, 0);
if (sockfd <0)

error("ERROR opening socket");

socket() returns an integer socket descriptor.
 sockfd <0 indicates that an error occurred.
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Echo client: gethostbyname ()

The client builds the server’ s Internet address.

struct sockaddr _in serveraddr ; [* server address */
struct hostent *server; [* server DNS host entry */
char *hostname; /* server domain name */
[* gethostbyname . get the server's DNS entry */
server = gethostbyname (hostname);
if (server == NULL) {
fprintf (stderr ,"ERROR, no such host as %s\n", hos tname);
exit(0);
}
/* build the server's Internet add ress */
bzero ((char *) & serveraddr , sizeof (serveraddr ));
serveraddr .sin_family = AF_INET;
bcopy ((char *)server->h__ addr,
(char *)& serveraddr .sin_addr .s_addr, server->h_length);
serveraddr .sin_port = htons (portno );
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Echo client. connect()

Then the client creates a connec tion with the server.

int sockfd ; [* socket des criptor */
struct sockaddr _in serveraddr ; [* server address */
if (connect( sockfd , &serveraddr , Sizeof  (serveraddr ))<0)

error("ERROR connecting");

At this point the client is ready to be  gin exchanging
messages with the server via sockfd

class24. ppt



Echo client: read() , write() , close()

The client reads a message from stdin, sends it to the
server, waits for the echo, and terminates.

[* get message line from the u ser */
printf ("Please enter msg: ");

bzero  (buf, BUFSIZE);

fgets (buf, BUFSIZE, stdin );

[* send the message line to th e server */
n = write( sockfd , buf , strlen( buf));
if (n<0)

error("ERROR writing to sock et");

[* print the server's reply */
bzero (buf, BUFSIZE);
n = read( sockfd , buf , BUFSIZE);

if (n<0)

error("ERROR reading from so cket");
printf ("Echo from server: %s", buf);
close( sockfd );
return O;
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Echo server: prologue

The server listens on a port pa ssed via the command line.

/*
* error - wrapper for perror
*/
void error(char * msq) {
perror  (msQ);
exit(1);
}
intmain(  intargc , char **argv ) {

/* local variable definitions */

/*

* check command line arguments

*/

if ( argc '=2) {
fprintf (stderr , "usage: %s <port>\n", argv [0]);
exit(1);

}

portno =atoi (argv[l));
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Echo server: socket()

socket() creates a socket.

int listenfd ; [* listening socket descriptor */

listenfd = socket(AF_INET, SOCK_STREAM, 0);
if ( listenfd < 0)
error("ERROR opening socket");

socket() returns an integer socket descriptor.
* listenfd < 0 indicates that an error occurred.

AF _INET: indicates that the socket is as sociated with
Internet protocols.

SOCK_STREAM: selects a reliable byte s tream connection.
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Echo server: setsockopt ()

The socket can be given so me attributes.

optval =1;
setsockopt (listenfd , SOL_SOCKET, SO _REUSEADDR,
( const void *)& optval , sizeof (int));

Handy trick that allows us to rerunthe  server
iImmediately after we kill i t.
« otherwise would have to wait about 15 secs.
« eliminates “Addres s already in use” error.

« Strongly suggest you d o this for all your serve rs to simplify
debugging.
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Echo server: Init socket address

Next, we Initialize the sock et with the server’s Internet
address (IP address and port)

struct sockaddr _in serveraddr ; [* server's addr */

[* this is an Internet address * /
bzero ((char?*) & serveraddr , sizeof (serveraddr ));
serveraddr .Ssin_family = AF_INET,;

[* a client can connect to any o f my IP addresses */
serveraddr .Sin_ addr.s_ addr = htonl (INADDR_ANY);

[* this is the port to associate the socket with */
serveraddr .Sin_port = htons ((unsigned short) portno);

Binary numbers must be stored in network byte order
(big-endien )
 htonl () converts longs from host byte order to network by te order.
* htons () convers shorts from host byte order to network byte order.
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TCP echo server: bind()

bind() associates the socket with a port.

int listenfd ; /* listening socket */
struct sockaddr _in serveraddr ; [* server's addr */
if (bind( listenfd , (struct sockaddr *) &serveraddr

sizeof (serveraddr ))<0)
error("ERROR on binding");
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Echo server: listen()

listen() Indicates that this socket wil | accept
connection ( connect ) requests from clients.

int listenfd ; /* listening so cket */

if (listen( listenfd , 5) <0) /* allow 5 requests to g ueue up */
error("ERROR on listen");

We’'re finally ready to enter the mai n server loop that
accepts and processes clie nt connection requests.
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Echo server: main loop

The server loops endlessly , waiting for connection
requests, then reading input from the cli  ent, and
echoing the input back to the clie nt.

main() {
[* create and configure the lis tening socket */
while(1) {
[* accept(): wait for a conn ection request */
[* read(): read an input lin e from the client */
* write(): echo the line ba ck to the client */
/* close(): close the connec tion */
}
}
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Echo server. accept()

accept()  blocks waiting for a connection  request.

int listenfd ; [* listening socket */

int connfd ;  [* connection socket */

int clientlen ; I* byte size of client's add ress */
struct sockaddr _in clientaddr ; [* client addr */

clientlen = sizeof  (clientaddr );
connfd = accept( listenfd
( struct sockaddr *) & clientaddr , &clientlen );
if ( connfd < 0)
error("ERROR on accept");

accept() returns a connection socket descriptor
(connfd ) with the same properties as the | istening
descriptor ( listenfd ).
« all I/O with the client will b e done via the conn ection socket.

» useful for concurrent se rvers where parent creates a new process or
thread for each conne ction request.

accept() also fills in client's address.
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Echo server: identifying client

The server can determine the domal n name and IP
address of the client.

struct sockaddr _in clientaddr ; [* client addr */
struct hostent * hostp; /[* client DNS host ent ry */
char * hostaddrp ; [* dotted decimal host addr string */

hostp = gethostbyaddr ((const char*)& clientaddr .sin_addr .s addr |,
sizeof  (clientaddr .Sin_ addr.s_addr ), AF_INET);

if (hostp == NULL)
error("ERROR on gethostbyaddr ");
hostaddrp =inet _ntoa(clientaddr .Sin_ addr);
if (hostaddrp == NULL)
error("ERROR on inet_ntoa \n");
printf  ("server established connection with % S (%s)\n",

hostp  ->h_name, hostaddrp );
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Echo server: read()

The server reads an ASCII input | ine from the client.

int connfd [* child socket */
char buf [BUFSIZE]; /* message buffer */
int n; [* message byte size */

bzero (buf, BUFSIZE);
n=read( connfd , buf, BUFSIZE);
if (n<0)
error("ERROR reading from socket ");
printf  ("server received %d bytes: %s", n, buf );

At this point, it looks just like  file 1/O.
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Echo server: write()

Finally, the server echoes
client, closes the connection,

for the next connection request (from possibly s

other client on the network).

the input line back to the

and loops back to wait
ome

; [* conection
[BUFSIZE]; /* message buffer */
[* message byte

int connfd
char buf
int n;
n = write( connfd , buf, strlen
if (n<0)

error("ERROR writing to socket")

(buf));

close( connfd);

socket */

size */
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Testing the echo server with  telnet

bass> echoserver 5000
server established connection with
server received 5 bytes: 123
server established connection with
server received 8 bytes: 456789

kittynawk > tel net bass 5000
Trying 128.2.222.85...

Connected to BASS.CMCL.CS.CMU.EDU.

Escape character is ']

123

123

Connection closed by foreign host.
kittynawk > tel net bass 5000
Trying 128.2.222.85...

Connected to BASS.CMCL.CS.CMU.EDU.

Escape character is "]

456789

456789

Connection closed by foreign host.
kittyhawk >

KITTYHAWK.CMCL (128.2.194.242)

KITTYHAWK.CMCL (128.2.194.242)
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Running the echo client and server

bass> echoserver 5000

server established connection with KITTYHAWK.CMCL (128.2.194.242)
server received 4 bytes: 123
server established connection with KITTYHAWK.CMCL (128.2.194.242)

server received 7 bytes: 456789

kittyhawk > echocl i ent bass 5000
Please enter msg : 123
Echo from server: 123

kittyhawk > echocl i ent bass 5000
Please enter msg : 456789

Echo from server: 456789

kittyhawk >

class24. ppt




For more Info

Complete versions of the echo clie nt and server are
available from the course web page.

e follow the “Documents” link.

You should compile and run them  for yourselves to see
how they work.
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