15-213

“The course that gives CMU its Zip!”

Caches
October 12, 2000

Topics
 Memory Hierarchy
— Locality of Reference
« SRAM Caches
— Direct Mapped
— Associative

cl ass14. ppt

Computer System

Processor I< interrupt

Cache

Memory-1/O bus

/O
controller

/O
controller

‘ Display I ‘ Network I

cl assl14. ppt —_2_ CS 213 F00

/O
controller

‘ Memory I

Levels in Memory Hierarchy

cache virtual memory
< > <« >
C
CPU 8B a 32B Memory 8 KB @
regs -
e
Register Cache Memory Disk Memory
size: 200 B 32 KB /4MB 128 MB 30 GB
Speed: 3 ns 4 ns 60 ns 8 ms
$/Mbyte: $100/MB $1.50/MB $0.05/MB
line size: 8B 32B 8 KB

Iarger, slower, cheaEer l

cl ass14. ppt

Caches:

L1 data

L1 instruction
L2 unified
TLB

Branch history

cl ass14. ppt

Alpha 21164

Chip Caches

L3 Control
Right Half
L2

Right Half
L2
—4 —

CS 213 F'00

Locality of Reference

Principle of Locality:

 Programs tend to reuse d ata and instructions ne ar those they have
used recently.

 Temporal locality: recently referenced ite ms are likely to be
referenced in the nea r future.

o Spatial locality: items with nearby ad dresses tend to be refe renced
close together in tim e.

sum = O;
for (i =0; i < n; i++)
o sum += ali];
Locality in Example: *v = sum]

 Data

— Reference array elements in succession (spatial)
 Instructions

— Reference instructions in sequence (spatial)

— Cycle through loop repeatedly (temporal)

cl ass14. ppt

Caching: The Basic Idea

Main Memory

* Stores words Small, Big, Slow Memory
A—Z in example Fast Cache

Cache Processor A A
« Stores subset of the B B
words <« <> C
4 in example G .
e Organized in lines A
— Multiple words Y
—To exploit spatial locality Z

Access

« Word must be in cac he
for processor to acces s

cl ass14. ppt

Basic Idea (Cont.)

Initial Read C Read D Read Z
A A A Y
B B B Z
G C C C
H D D D
Cache holds 2 Load line C+D Word already in Load line Y+Z
lines Into cache cache Into cache
Each with 2 “Cache miss” “Cache hit” Evict oldest
words entry

Maintaining Cache:

« Each time the proces sor performs a load or sto re, bring line
containing the word into the cache

—May need to evict existing line

e Subsequent loads or s tores to any word in line p erformed within
cache

cl ass14. ppt

Accessing Data in Memory Hierarchy

High
Level

Low
Level

Between any two levels,
Data moves between | evels on demand, in line-sized chunk s.
Invisible to applic ation programmer

memory is divided into lines (aka “blocks ”)

—Hardware responsible for cache operation

Access word win line a (hit)

A
W

cl ass14. ppt

Upper-level lines a subset of lower-level lin es.

Access word V in line b &miss)

\Y

Design Issues for Caches

Key Questions:
 Where should a line be placed in the ¢ ache? (line place ment)
« How is aline found in the cache? (line iden tification)
* Which line should b e replaced on a mis s? (line replaceme nt)
 What happens on a write? (write strategy)

Constraints:
* Design must be very simple
—Hardware realization
— All decision making within nanosecond time scale
« Want to optimize pe rformance for “typical” programs
— Do extensive benchmarking and simulations
—Many subtle engineering tradeoffs

cl ass14. ppt

Direct-Mapped Caches

Simplest Design

« Each memory line h as a unique cache location

Parameters
 Line (or block) size B =2°
—Number of bytes in each line
— Typically 2X-8X word size
e Number of SetsS=2 s
—Number of lines cache can hold
e Total Cache Size = B*S = 2b+s t S b

m-bit Physical Address

Physical Address
« Address used to referenc e main memory
* m bits to reference M =2 ™ total bytes
« Partition into fields
— Offset: Lower b bits indicate which byte within line
— Set: Next s bits indicate how to locate line within cache
—Tag: ldentifies this line when in cache

tag set index offset

cl ass14. ppt

Indexing into Direct-Mapped Cache

Tag ||Valid B-1
Tag ||Valid B-1
Tag ||Valid B-1

Set O:
 Use set index bits
to select cache set Set 1:
—>
Set S-1:
A
(\
t S b
tag set index offset

Physical Address

cl ass14. ppt

Direct-Mapped Cache Tag Matching

ldentifying Line

e Must have tag match h igh
order bits of address

=17

B-1

Valid| |[Of1] °°°

T‘

e Lower bits of address

« Must have Valid =1 Selected Set:
_— =7 Tag
t S b
tag set index offset

Physical Address

cl ass14. ppt

select byte or word
within cache line

Direct Mapped Cache Simulation

M=16 byte addresses, B=2 bytes/lin e, S=4 sets, E=1 entry/set
t=1 s=2 b=1 Address trace (reads):

XX X 0 [0000] 1 [0001] 13 [1101] 8 [1000] O [0000]
0 [0000] (miss) 13 [1101] (miss)
v tag data v tag data
(1) (2)
8 [1000] (miss) 0 [0000] (miss)
v tag data v tag data
(3) (4)

cl ass14. ppt

Why Use Middle Bits as Index?

4-line Cache

00
01
I

10
11

High-Order Bit Indexing

« Adjacent memory line s would
map to same cac he entry

* Poor use of spatial lo cality

Middle-Order Bit Indexing

e Consecutive memory lines map
to different cache lin es

e Can hold C-byte region of
address space in cache at one
time

cl ass14. ppt

High-Order
Bit Indexing

0 V7
\ V7%
7

R O

=
=

o
o

o
=

=
o

=
=

o
o

o
=

=
o

=
=

o
o

o
=

=

RRRRPRPRRPROOCIOIOIO|IO|O|O
EEEERRIEIRRIERREIIEIBIEBIS
o

=
=

Middle-Order
Bit Indexing

_W

Direct Mapped Cache Implementation

(DECStation 3100)

313029 ...coovviiin 19181716 151413 5432 10

byte

pffset

valid tag (16 bits)

data (32 bits)

cl ass14. ppt

(D)

>

v

T

data

16,384 sets

Properties of Direct Mapped Caches
Strength

e Minimal control hardware ove rhead
e Simple design
* (Relatively) easy to make fast

Weakness

e Vulnerable to thrashing
« Two heavily used li nes have same c ache index
* Repeatedly evict o0 ne to make room for othe r

Cache Line

\
P

cl ass14. ppt

Vector Product Example

float dot prod(float x[1024], y[1024])
{

float sum = 0. O;

Int 1 ;

for (I = 0; 1 < 1024; |i++)
sum += x[1]*y[1];

return sumni

Machine

« DECStation 5000

 MIPS Processor with 64KB direct-map ped cache, 16 B lin e size
Performance

» Good case: 24 cyc les / element
« Bad case: 66 cyc les / element

cl ass14. ppt

Thrashing Example

X[0]) y[0])
X[1] Cache y[1] Cache
X[2] ~ Line y[2] ~ Line
X[3] < y[3] <
. . > Cache . . > Cache
. . Line . . Line
¢ [] -/ ¢ [] -/
x[1020]) y[1020])
x[1021] - Cache y[1021] - Cache
x[1022] Line y[1022] Line
x[1023] D y[1023] D

« Access one elem ent from each array per i teration

cl ass14. ppt

Thrashing Example: Good Case

x[0] y[O]
x[1] y[1]
x[2] y[2]
x[3] y[3]

Access Sequence
* Read x[0]
—x[0], x[1], x[2], x[3] loaded
* Read y[0]
—y[0], y[1], ¥{2], y[3] loaded
* Read x[1]
— Hit
* Read y[1]
— Hit

e 2 misses/ 8 reads

cl ass14. ppt

~
Cache
Line
—
Analysis

 X[i] and y[i] map to different

cache lines

 Miss rate = 25%

— Two memory accesses / iteration

— On every 4th iteration have two
misses

Timing

« 10 cycle loop time
» 28 cycles / cache miss
» Average time / iteration =

10+ 0.25*2* 28

Thrashing Example: Bad Case

x[0]
x[1]
x[2]
x[3]

y[O]
y[1]
y[2]
y[3]

Access Pattern

» Read x[0]

—x[0], x[1], x[2], x[3] loaded
* Read y[0]

—yl[0], y[1], ¥i2], y[3] loaded
» Read x[1]

—x[0], x[1], x[2], x[3] loaded
* Read y[1]

—yl[0], y[1], yi2], y[3] loaded

» 8 misses/ 8 reads

cl ass14. ppt

~
Cache
Line
—/
Analysis
 X[i] and y[i] map to same cache
lines

* Miss rate = 100%
— Two memory accesses / iteration
—On every iteration have two

misses
Timing

« 10 cycle loop time

» 28 cycles / cache miss

» Average time / iteration =

10+1.0*2*28

Set Assoclative Cache
Mapping of Memory Lines

 Each set can hold E lines
— Typically between 2 and 8
« Given memory line ¢ an map to any entry withi n its given set

Eviction Policy
« Which line gets ki cked out when bring new line in
« Commonly either “Le ast Recently Used” (L RU) or pseudo-random
— LRU: least-recently accessed (read or written) line gets evicted

L RU State
Line O: Tag |[valid| |O] 1] e B-1
Seti:
Line 1: Tag |[valid| |O] 1] e B-1
Line E-1: Tag |[valid| |O] 1] e B-1

cl ass14. ppt

Indexing into 2-Way Associative Cache

 Use middle s bits to select Set O:
from among S = 2 S sets

Tag |[Valid B-1
Tag ||Valid B-1
Tag |[Valid B-1
Tag |[Valid B-1
Tag |[Valid B-1
Tag |[Valid B-1

Set 1:
—>
Set S-1.:
A
(\
t S b
tag set index offset

Physical Address

cl ass14. ppt

2-Way Associative Cache Tag Matching

ldentifying Line

 Must have one of the

tags match high orde r =17?
bits of address
e Must have Valid =1 for Selected Set:
this line _ — R
s W Tag Vah;l 01 B-1
11 Tag |valid| [O]1] ®°° B-1

R

t S b

tag set index offset

Physical Address

cl ass14. ppt

 Lower bits of address
select byte or word
within cache line

2-Way Set Associative Simulation

t=2 s=1 b=1 M=16 addresses, B=2 bytes/line, S=2 sets, E=2 entries/set
XX X X Address trace (reads):
0 [0000] 1 [0001] 13 [1101] 8 [1000] 0 [0000]
tag data v tag data
0 (miss)
tag data v tag data
13 (miss)
tag data v tag data
8 (miss)
(LRU replacement)
tag data v tag data

0 (miss)

cl ass14. ppt

(LRU replacement)

Two-Way Set Associative Cache
Implementation

« Setindex selects a set from the cache
 The two tags in the se t are compared in paral lel
« Data is selected b ased on the tag resul t

Valid Cache Tag Cache Data

Cache Line O

Set Index

Cache Data

Cache Tag Valid

Cache Line O

Adr Ta v
Com@ ste'l 1

cl ass14. ppt

v

Cache Line

Fully Associative Cache
Mapping of Memory Lines

e Cache consists of s ingle set holding E i nes
« Given memory line ¢ an map to any line in set
* Only practical for smal

| caches

Entire Cache

Line O:
Line 1:

Line E-1:

LRU State
Tag |Valid| |0]1 B-1
Tag |Valid| |0]1 B-1
Tag |Valid| |0]1 B-1

cl ass14. ppt

Fully Associative Cache Tag Matching

ldentifying Line

« Must check all of the tags for
match

e Must have Valid = 1 for this line

=17
|
v
Tag |Malid| [O]1] °°° B-1
v
Tag |Valid| [O]1] °°° B-1
B /
Tag |Valid| [O]1] e°° B-1

T‘

=7
L
4 Y/
t b
tag offset

Physical Address
cl ass14. ppt

 Lower bits of address
select byte or word
within cache line

Fully Associative Cache Simulation

M=16 addresses, B=2 bytes/line, S=1 sets, E=4 entries/set
t=3 s=0 b=1 Address trace (reads):

0 [0000] 1 [0001] 13 [1101] 8 [1000] O [0000]

XXX
0 (miss) 13 (miss)
v tag data v tag data
(1) setg (2)
8 (miss)

v tag data

(3)

cl ass14. ppt

Write Policy

 What happens when proc essor writes to the cache ?
« Should memory be upd ated as well?

Write Through:

» Store by processor upda tes cache and memory.
« Memory always consiste nt with cache

* Never need to store from cache to memory

o ~2X more loads than stores

Store
> Memory
Processor
o
<+— Cache ||
Load
Cache
Load

cl ass14. ppt

Write Strategies (Cont.)

Write Back:

* Store by processor only

» Set when line in cache is modified

updates cache lin e
« Modified line written to memo

ry only when it is evic ted
—Requires “dirty bit” for each line

» Indicates that line in memory is stale
« Memory not always consi stent with cache

Processor

Store

cl ass14. ppt

Load

Write
Back

Cache

Memory

Cache
Load

Multi-Level Caches

Options: separate data and instruction caches, or a unified cache

Processor \

TLB \
" \Ll Dcache L Memory —

L1 Icache Cache
size: 200 B 8-64 KB 1-4MB SRAM 128 MB DRAM 30 GB
Speed: 3 ns 3 ns 6 ns 60 ns 8 ms
$/Mbyte: $100/MB $1.50/MB $0.05/MB
line size: 8B 32B 32B 8 KB

larger, slower, cheaper

larger line size, higher associativity, more likely to write back

cl ass14. ppt

Alpha 21164 Hierarchy

Regs.

L1 Data
8KB, direct

Dual Ported
32B lines

1 cycle lat ency

<+
Write-throu gh |€—»
<+

L1 Instruc tion
8KB, direct
32B lines

«—

Processor Ch ip

L2 Unified
8 cycle lat ency
96KB
3-way asso cC.
Write-back
Write alloca te
32B/64B lin es

L3 Unified
1M-64M
direct
Write-back
Write alloca te
32B or 64B
lines

* Improving memory pe rformance was a main de sign goal
« Earlier Alpha’s CPUs starved

cl ass14. ppt

for data

Main
Memory
Upto 1TB

Pentium Il Xeon Hierarchy

L1 Data
1 cycle lat ency
16KB
4-way <P L2 Unifi
Regs.|€—»| write-throu gh E;J12KeOI -
32B lines 4-way <+—> MI\/Ialn
Write-back linirjzﬁa
) Write alloca te
L1 Instruc tion 32B lines
16KB, 4-way |«
32B lines
Processor Ch ip

cl ass14. ppt

Cache Performance Metrics

Miss Rate

 fraction of memory refere nces not found in cac he
(misses/references)

e Typical numbers:
3-10% for L1
can be quite small (e.g., < 1%) for L2, depending on size, etc.

Hit Time
» time to deliver ali ne in the cache to th e processor (includes time to
determine whether the lin e is in the cache)

e Typical numbers:
1 clock cycle for L1
3-8 clock cycles for L2

Miss Penalty
« additional time requi red because of a mi ss
— Typically 25-100 cycles for main memory

cl ass14. ppt

Caching as a General Principle

LO: CPU registers hold words

egisters } retrieved from cache

L1:/ on-chip L1 memory.
cache (SRAM) L1 cache holds cache lines

Larger, / _ } retrieved from memory.
slower, L2 off-chip L2 \

and cache (SRAM) L2 cache holds cache lines
cheaper retrieved from memory.
storage |3 main memory
devices (DRAM) Main memory holds disk
blocks retrieved from local
disks.
L4 local secondary storage
(local disks) Local disks hold files
retrieved from disks
on remote network
L5: remote secondary storage SEIVErS.

(distributed file systems, Web servers)

cl ass14. ppt

Forms of Caching

Cache Type |What Cached |Where Cached |Latency Managed
(cycles) By

Registers 4-byte word CPU Registers 0 | Compiler

TLB Address On-Chip TLB O | Hardware

Translations

SRAM 32-byte block On-Chip L1 1 | Hardware

SRAM 32-byte block Off-Chip L2 10 | Hardware

Virtual 4-KB page Main Memory 100 | MMU+OS

Memory

Buffered Files File Buffer Main Memory 100 | OS

Network File Parts of Files Processor Disk 10,000,000 | AFS Client

Cache

Browser Web Pages Processor Disk 10,000,000 | Browser

Cache

Web Cache Web Pages Server Disks 1,000,000,000 | Akamai

Server

cl ass14. ppt

