
Recitation 14

Priority Queues

14.1 Announcements

• PASLLab has been released, and is due next Friday (April 29 – or is that next next
Friday?). PASLLab worth 175 points.

75

76 RECITATION 14. PRIORITY QUEUES

14.2 Leftist Heaps

Task 14.1. Identify the defining properties of a leftist heap.

A leftist heap is a binary tree given by

datatype tree = Leaf | Node of key × tree × tree

which satisfies

(a) the heap property, requiring that the key stored at each node is smaller1 than any descen-
dent key, and

(b) the leftist property, requiring that for every Node(, L,R), we have rank(L) ≥ rank(R).
We define the rank of a heap to be the number of nodes in its right spine, i.e.,

rank(Leaf) = 0

rank(Node(, L,R)) = 1 + rank(R)

Task 14.2. What is an upper bound on the rank of the root of a leftist heap?

For a leftist heap containing n entries, the rank of the root is at most log2(n + 1).

1We assume a min-heap. In a max-heap, each key is larger than its descendents.

Built: April 19, 2016

14.2. LEFTIST HEAPS 77

14.2.1 Building A Leftist Heap

Consider the following pseudo-SML code implementing leftist heaps.

Data Structure 14.3. Leftist Heap

1 datatype PQ = Leaf | Node of int × key × PQ × PQ
2
3 fun rank Q =
4 case Q of
5 Leaf ⇒ 0
6 | Node (r,_,_,_) ⇒ r
7
8 fun makeLeftistNode (k,A,B) =
9 if rank A < rank B

10 then Node (1 + rank A, k, B, A)
11 else Node (1 + rank B, k, A, B)
12
13 fun meld (A,B) =
14 case (A,B) of
15 (_, Leaf) ⇒ A
16 | (Leaf, _) ⇒ B
17 | (Node (_,ka,La,Ra), Node (_,kb,Lb,Rb)) ⇒
18 if ka < kb
19 then makeLeftistNode (ka, La, meld (Ra, B))
20 else makeLeftistNode (kb, Lb, meld (A,Rb))
21
22 fun singleton k = Node (1,k,Leaf,Leaf)
23
24 fun insert (Q, k) = meld (Q, singleton k)
25
26 fun fromSeq S = Seq.reduce meld Leaf (Seq.map singleton S)
27
28 fun deleteMin Q =
29 case Q of
30 Leaf ⇒ (NONE, Q)
31 | Node (_,k,L,R) ⇒ (SOME k, meld (L,R))

Built: April 19, 2016

78 RECITATION 14. PRIORITY QUEUES

Task 14.4. Diagram the process of executing the code

fromSeq 〈3, 5, 2, 1, 4, 6, 7, 8〉

3 5 2 1 4 6 7 8

3 1 4 7
/ / / /

5 2 6 8

1 4
/ \ / \
2 3 6 7

/ /
5 8

1
/ \
3 2
/ \
4 5
/ \
6 7

/
8

Task 14.5. What are the work and span of (fromSeq S) in terms of |S| = n?

Notice that meld only traverses the right spines of its arguments, each of which are logarithmic
in length, and therefore meld(A,B) requires O(log |A|+ log |B|) work and span and returns a
heap of size |A|+ |B|. This suggests the recurrences

W (n) = 2W (n/2) + O(log n)

S(n) = S(n/2) + O(log n)

both of which we have seen before; they solve to O(n) work and O(log2 n) span, respectively.

Built: April 19, 2016

14.2. LEFTIST HEAPS 79

14.2.2 Dynamic Median

Task 14.6. Design a data structure which supports the following operations:

Work Span Description

fromSeq S O(|S|) O(log2 |S|) Constructs a dynamic me-
dian data structure from
the collection of keys in S

median M O(1) O(1) Returns the median of all
keys stored in M

insert (M,k) O(log |M |) O(log |M |) Inserts k into M

For simplicity, you may assume that all elements inserted into such a structure are dis-
tinct.

Our data structure will be a triple (L,m,G), where L is a max-heap, m is the median, and G is
a min-heap. We maintain the invariant that L contains all items less than m, and symmetrically
G contains all items greater than m.

To implement fromSeq, we use a selection algorithm (i.e. quickselect) to select the median
of the sequence using linear work and log-squared span. We filter twice to create a left and
right half containing all items less than and greater than the median, respectively. Perform
MaxPQ.fromSeq and MinPQ.fromSeq on these halves to construct L and G.

To implement insert, check if k ≥ m. If so, insert k into G. If this results in |L|+2 = |G|,
then insert m into L, delete the minimum from G, and set it to be the new median. We do the
obvious symmetric thing for the case k < m.

We implement median by simply returning m.

Built: April 19, 2016

80 RECITATION 14. PRIORITY QUEUES

14.3 Additional Exercises

Exercise 14.7. Prove a lower bound of Ω(log n) for deleteMin in comparison-based
meldable priority queues. That is, prove that any meldable priority queue implementa-
tion which has a logarithmic meld cannot support deleteMin in faster than loga-
rithmic time.

Built: April 19, 2016

	Priority Queues
	Announcements
	Leftist Heaps
	Building A Leftist Heap
	Dynamic Median

	Additional Exercises

