Recitation 14

Priority Queues

14.1 Announcements

e PASLLab has been released, and is due next Friday (April 29 — or is that next next
Friday?). PASLLab worth 175 points.

75

76 RECITATION 14. PRIORITY QUEUES

14.2 Leftist Heaps

Task 14.1. Identify the defining properties of a leftist heap.

A leftist heap is a binary tree given by

datatype tree = Leaf | Node of key X tree X tree

which satisfies

(a) the heap property, requiring that the key stored at each node is smaller' than any descen-
dent key, and

(b) the leftist property, requiring that for every Node(_, L, R), we have rank(L) > rank(R).
We define the rank of a heap to be the number of nodes in its right spine, i.e.,

rank(Leaf) =0
rank(Node(_, L, R)) = 1 4 rank(R)

Task 14.2. What is an upper bound on the rank of the root of a leftist heap?

For a leftist heap containing n entries, the rank of the root is at most log,(n + 1).

'We assume a min-heap. In a max-heap, each key is larger than its descendents.

Built: April 19, 2016

14.2. LEFTIST HEAPS

77

14.2.1 Building A Leftist Heap

Consider the following pseudo-SML code implementing leftist heaps.

Data Structure 14.3. Leftist Heap

1 datatype PO = Leaf | Node of int X key X PQ X PQ

2

3 fun rank Q =

4 case () of

5 Leaf = 0

6 | Node (r,_,_,_) = r

7

8 fun makeLeftistNode (k,A,B) =

9 if rank A < rank B

10 then Node (1 + rank A, k, B, A)
11 else Node (1 + rank B, k, A, B)
12

13 fun meld (A,B) =

14 case (A, B) of

15 (_, Leaf) = A

16 | (Leaf, _) = B

17 | (Node (_,ka,Ls,Ry), Node (_,ky, Ly, Rp)) =

18 if ko < ky

19 then makeLeftistNode (ko, Lo, meld (R4, B))
20 else makeLeftistNode (ky, Ly, meld (A, Rp))
21

22 fun singleton k = Node (1,k,Leaf,Leafr)

23

24 fun insert (Q,k) = meld (Q, singleton k)

25

26 fun fromSeq S = Seq.reduce meld Leaf (Seqg.map singleton S)
27

28 fun deleteMin @ =

29 case () of

30 Leaf = (NONE, Q)

31 | Node (_,k,L,R) = (SOME k, meld (L,R))

Built: April 19, 2016

78 RECITATION 14. PRIORITY QUEUES

Task 14.4. Diagram the process of executing the code
fromSeq (3,5,2,1,4,6,7,8)

35214678

Task 14.5. What are the work and span of (fromSeq S) in terms of |\S| = n?

Notice that me 1d only traverses the right spines of its arguments, each of which are logarithmic
in length, and therefore me 1d(A, B) requires O(log |A| + log | B|) work and span and returns a
heap of size |A| + |B|. This suggests the recurrences

W(n) =2W(n/2) + O(logn)
S(n) = S(n/2) + O(logn)

both of which we have seen before; they solve to O(n) work and O(log® n) span, respectively.

Built: April 19, 2016

14.2. LEFTIST HEAPS 79

14.2.2 Dynamic Median

Task 14.6. Design a data structure which supports the following operations:

‘ Work ‘ Span ‘ Description

fromSeq S O(]S]) O(log? |S|) | Constructs a dynamic me-
dian data structure from
the collection of keys in S

median M O(1) O(1) Returns the median of all
keys stored in M

insert (M,k) | O(log|M]|) | O(log|M]|) | Inserts k into M

For simplicity, you may assume that all elements inserted into such a structure are dis-
tinct.

Our data structure will be a triple (L, m, G), where L is a max-heap, m is the median, and G is
a min-heap. We maintain the invariant that L contains all items less than m, and symmetrically
G contains all items greater than m.

To implement f romSeq, we use a selection algorithm (i.e. quickselect) to select the median
of the sequence using linear work and log-squared span. We filter twice to create a left and
right half containing all items less than and greater than the median, respectively. Perform
MaxPQ.fromSeqand MinPQ. fromSeq on these halves to construct L and G.

To implement insert, checkif & > m. If so, insert & into G. If this results in |L|+2 = |G/,
then insert m into L, delete the minimum from G, and set it to be the new median. We do the
obvious symmetric thing for the case k < m.

We implement median by simply returning m.

Built: April 19, 2016

80 RECITATION 14. PRIORITY QUEUES

14.3 Additional Exercises

Exercise 14.7. Prove a lower bound of Q)(log n) for deleteMin in comparison-based
meldable priority queues. That is, prove that any meldable priority queue implementa-

tion which has a logarithmic me1d cannot support deleteMin in faster than loga-
rithmic time.

Built: April 19, 2016

	Priority Queues
	Announcements
	Leftist Heaps
	Building A Leftist Heap
	Dynamic Median

	Additional Exercises

