Recitation 14

Priority Queues

14.1 Announcements

- PASLLab has been released, and is due next Friday (April 29 – or is that next next Friday?). PASLLab worth 175 points.
14.2 Leftist Heaps

Task 14.1. Identify the defining properties of a leftist heap.

Task 14.2. What is an upper bound on the rank of the root of a leftist heap?
14.2.1 Building A Leftist Heap

Consider the following pseudo-SML code implementing leftist heaps.

```
Data Structure 14.3. Leftist Heap
1 datatype PQ = Leaf | Node of int × key × PQ × PQ
2
3 fun rank Q =
4   case Q of
5     Leaf ⇒ 0
6   | Node (r, _, _, _) ⇒ r
7
8 fun makeLeftistNode (k, A, B) =
9   if rank A < rank B
10      then Node (1 + rank A, k, B, A)
11      else Node (1 + rank B, k, A, B)
12
13 fun meld (A, B) =
14   case (A, B) of
15     (_, Leaf) ⇒ A
16   | (Leaf, _) ⇒ B
17   | (Node (_, k_a, L_a, R_a), Node (_, k_b, L_b, R_b)) ⇒
18     if k_a < k_b
19        then makeLeftistNode (k_a, L_a, meld (R_a, B))
20     else makeLeftistNode (k_b, L_b, meld (A, R_b))
21
22 fun singleton k = Node (1, k, Leaf, Leaf)
23
24 fun insert (Q, k) = meld (Q, singleton k)
25
26 fun fromSeq S = Seq.reduce meld Leaf (Seq.map singleton S)
27
28 fun deleteMin Q =
29   case Q of
30     Leaf ⇒ (NONE, Q)
31   | Node (_, k, L, R) ⇒ (SOME k, meld (L, R))
```

Task 14.4. Diagram the process of executing the code

```
fromSeq ⟨3, 5, 2, 1, 4, 6, 7, 8⟩
```

Task 14.5. What are the work and span of (fromSeq S) in terms of $|S| = n$?
14.2.2 Dynamic Median

Task 14.6. Design a data structure which supports the following operations:

<table>
<thead>
<tr>
<th>Operation</th>
<th>Work</th>
<th>Span</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>fromSeq S</td>
<td>$O(</td>
<td>S</td>
<td>)$</td>
</tr>
<tr>
<td>median M</td>
<td>$O(1)$</td>
<td>$O(1)$</td>
<td>Returns the median of all keys stored in M</td>
</tr>
<tr>
<td>insert (M,k)</td>
<td>$O(\log</td>
<td>M</td>
<td>)$</td>
</tr>
</tbody>
</table>

For simplicity, you may assume that all elements inserted into such a structure are distinct.
Exercise 14.7. Prove a lower bound of $\Omega(\log n)$ for deleteMin in comparison-based meldable priority queues. That is, prove that any meldable priority queue implementation which has a logarithmic meld cannot support deleteMin in faster than logarithmic time.