
Recitation 15

PASL

15.1 Announcements

• PASLLab is due Friday afternoon.

• We will likely be having a final review sometime on Wednesday, May 4. Keep your ears
open for more details.

• The final exam is on Friday, May 6, 1:00-4:00pm.

81

82 RECITATION 15. PASL

15.2 map_flatten

Let’s begin by downloading the files rec15.hpp and rec15-bench.cpp. You can put
these in the top directory of PASLLab. Then, edit PASLLab’s Makefile to add rec15-bench.cpp
to the list of programs, i.e.

PROGRAMS=\
sandbox.cpp \
check.cpp \
bench.cpp \
rec15-bench.cpp # add me here.

don’t forget the slash on the previous line.

Task 15.1. Using PASL primitives, implement the function

template <class Map_func, class Size_func>
sparray map_flatten(const Map_func& f,

const Size_func& g,
const sparray& xs);

where, at a high-level, the goal is to compute

flatten
〈
f(x) : x ∈ xs

〉
.

You should assume that the function arguments are typed as follows, where f(xs[i])
is a pointer to the front of an array of length g(xs[i]).

f : value_type→ value_type∗
g : value_type→ long

Built: April 25, 2016

15.3. INJECT 83

15.3 inject

Throughout the semester, we’ve largely kept the sequence function inject shrouded in mys-
tery. Let’s see how the magic works!

Task 15.2. Using PASL, implement the function

sparray inject(const sparray& xs,
const sparray& indices,
const sparray& updates);

which returns the result of injecting into xs. We require that indices and updates
be the same length, such that for each i, we attempt to write updates[i] at position
indices[i] in xs. Note that you should not destructively modify xs.
If there are multiple updates specified at the same position, then all except the last
should be ignored. (We want to match the behavior of inject as specified in the
15210 Library.)

Built: April 25, 2016

84 RECITATION 15. PASL

15.4 Benchmarking

Try running some speedup experiments! The two bench arguments are map_flatten and
inject, respectively. For example, the following injects m randomly placed updates into an
array length n. In the map_flatten benchmark, n is the initial array size, and m is the size
of each subarray (so the output is length nm).

make rec15-bench.opt rec15-bench.baseline

./prun speedup -baseline "./rec15-bench.baseline" \
-parallel "./rec15-bench.opt -proc 1,5,10,15,20" \
-bench inject -n 100000,1000000 -m 100000000,200000000

./pplot speedup -series n,m

Built: April 25, 2016

	PASL
	Announcements
	map`flatten
	inject

