
Recitation 9

Graph Search: BFS and DFS

9.1 Announcements

• BridgeLab has been released, and is worth 140 points. The due dates are a bit wonky be-
cause of Spring Break: the written section is due at Friday at 5pm, while the programming
portion is due Sunday night.

• ShortLab will be released on Friday.

45

46 RECITATION 9. GRAPH SEARCH: BFS AND DFS

9.2 DFS Trees and Numberings

Task 9.1. Starting at vertex 1, execute DFS on the following graph, visiting vertices in
increasing order. Trace the process by doing each of the following.

1. Draw the resulting DFS tree. Draw tree edges as solid lines, and include non tree
edges in your drawing as dashed lines.

2. Classify each non tree edge as one of forward, back, or cross.

3. Label each vertex with its discovery and finish times.

1

23

4

5

7

6

8

9

10

In the following diagram, back edges are red, forward edges are blue, and cross edges are green.

1

2

3

4

5

7

6

8

9

10

Vertex Discovery Finish
1 0 19
2 1 6
3 2 5
4 3 4
5 7 18
6 8 15
7 9 10
8 11 14
9 12 13

10 16 17

Built: March 14, 2016

9.2. DFS TREES AND NUMBERINGS 47

Task 9.2. Suppose DFS is run on a directed graph, and consider some edge (x, y).
Using the discovery and finish times of x and y, attempt to classify this edge as one of
tree, forward, back, or cross.

Write d[v] and f [v] for the discovery and finish time of v, respectively.

Numbering Possible Edge Type
d[x] < d[y] < f [y] < f [x] tree, forward
d[y] < d[x] < f [x] < f [y] back
d[y] < f [y] < d[x] < f [x] cross

9.2.1 Higher-Order DFS

Recall the following code from the textbook:

Algorithm 9.3. Directed, generalized DFS.

1 directedDFS (revisit,discover,finish) (G,Σ0,s) =
2 let
3 DFS p ((X,Σ),v) =
4 if (v ∈ X) then (X,revisit (Σ,v,p)) else
5 let
6 Σ′ = discover (Σ,v,p)
7 X ′ = X ∪ {v}
8 (X ′′,Σ′′) = iterate (DFS v) (X ′,Σ′) (N+

G (v))
9 Σ′′′ = finish (Σ′,Σ′′,v,p)

10 in
11 (X ′′,Σ′′′)
12 end
13 in
14 DFS s (({},Σ0),s)
15 end

Task 9.4. Define Σ0, revisit, discover, and finish to calculate DFS number-
ings.

Algorithm 9.5. Time-stamping with generalized directed DFS.

1 Σ0 = ({},{},0)
2 revisit (Σ,_,_) = Σ
3 discover ((D,F,c),v,_) = (D ∪ {v 7→ c},F,c + 1)
4 finish (_,(D,F,c),v,_) = (D,F ∪ {v 7→ c},c + 1)

Built: March 14, 2016

48 RECITATION 9. GRAPH SEARCH: BFS AND DFS

Task 9.6. Modify the given generalized DFS code to work with undirected graphs.

(Hint: We only want to traverse each edge once! Try implementing
undirected cycle detection with the above algorithm and see where it fails.)

The problem with running the above code on an undirected graph is that every every child will
revisit its parent in the DFS tree, creating m back edges. Hence, when attempting undirected
cycle detection, every edge will be considered a cycle. We can fix this problem by omitting the
parent from the neighbors of each child.

Algorithm 9.7. Undirected, generalized DFS.

1 undirectedDFS (revisit,discover,finish) (G,Σ0,s) =
2 let
3 DFS p ((X,Σ),v) =
4 if (v ∈ X) then (X,revisit (Σ,v,p)) else
5 let
6 Σ′ = discover (Σ,v,p)
7 X ′ = X ∪ {v}
8 (X ′′,Σ′′) = iterate (DFS v) (X ′,Σ′) (N+

G (v) \ p)

9 Σ′′′ = finish (Σ′,Σ′′,v,p)
10 in
11 (X ′′,Σ′′′)
12 end
13 in
14 DFS s (({},Σ0),s)
15 end

Built: March 14, 2016

9.3. BFS 49

9.3 BFS

9.3.1 An Example

0

2

4

1

3

5

Task 9.8. Run BFS on the example graph above, starting at vertex 1. Draw the resulting
BFS tree. Draw tree edges as solid lines and non-tree edges as dashed lines.

0

2

4

1

3

5
Note that we could have chosen (5, 3) as a
tree edge instead of (2, 3). Either edge is
valid; as long as we don’t choose both as
tree edges, we’re golden!

Built: March 14, 2016

50 RECITATION 9. GRAPH SEARCH: BFS AND DFS

9.3.2 Implementation

Consider the following code, which computes the BFS tree of an enumerated graph represented
by an adjacency sequence. For brevity, we’ll write NONE as and (SOME x) as x .

Algorithm 9.9. Computing BFS trees on adjacency sequences.

1 fun BFS (G,s) =
2 let
3 fun BFS’ (Xi,Fi) =
4 if |Fi| = 0 then STSeq.toSeq Xi else
5 let
6 val Ni =
7 Seq.flatten

〈〈
(u, v) : u ∈ G[v] | Xi[u] =

〉
: v ∈ Fi

〉
8 val Xi+1 = STSeq.inject (Xi,Ni)
9 val Fi+1 =

〈
u : (u, v) ∈ Ni | Xi+1[u] = v

〉
10 in
11 BFS’ (Xi+1,Fi+1)
12 end
13
14 val init = STSeq.fromSeq

〈
: 0 ≤ i < |G|

〉
15 val X0 = STSeq.update (init, (s, s))
16 val F0 = 〈s〉
17 in
18 BFS’ (X0,F0)
19 end

Task 9.10. Execute this code on the example graph given in the first section, starting
with vertex 1 as the source. Trace the process by writing down the values Xi, Fi, and
Ni for i = 0, 1, 2, 3.

i Xi Fi Ni

0
〈

, 1 , , , ,
〉 〈

1
〉 〈

(2, 1), (5, 1)
〉

1
〈

, 1 , 1 , , , 1
〉 〈

2, 5
〉 〈

(0, 2), (4, 2), (3, 2), (3, 5)
〉

2
〈

2 , 1 , 1 , 5 , 2 , 1
〉 〈

0, 4, 3
〉 〈〉

3
〈

2 , 1 , 1 , 5 , 2 , 1
〉 〈〉

(nonexistent)

Built: March 14, 2016

9.3. BFS 51

Task 9.11. Analyze the work and span of this implementation in terms of n (the number
of vertices), m (the number of edges), and d (the diameter of the graph).

Let’s break down the code, line-by-line. We write ||F || =
∑

v∈F (1 + d+G(v)).

• Line 7: O(||Fi||) work, O(log n) span.

• Line 8: O(||Fi||) work, O(1) span.

• Line 9: O(||Fi||) work, O(log n) span.

• Line 14: O(n) work, O(1) span.

• Lines 15,16: O(1) work, O(1) span.

There are two important observations to make here:

1. no vertex is ever in a frontier more than once, and

2. the number of rounds of BFS is upper bounded by d+ 1. (There could be a vertex d hops
away from the source, and each round progresses by exactly one hop. The “+1” comes
from the final round which verifies that the frontier is empty, then exits).

We can now show that
d∑

i=0

||Fi|| ≤
∑
v

(1 + d+G(v)) = n + m.

Therefore the total work is

O

(
n +

d−1∑
i=0

||Fi||

)
= O(n + m)

and the span is O(d log n).

Built: March 14, 2016

52 RECITATION 9. GRAPH SEARCH: BFS AND DFS

.

Built: March 14, 2016

	Graph Search: BFS and DFS
	Announcements
	DFS Trees and Numberings
	Higher-Order DFS

	BFS
	An Example
	Implementation

