Recitation 9

Graph Search: BFS and DFS

9.1 Announcements

e BridgeLab has been released, and is worth 140 points. The due dates are a bit wonky be-
cause of Spring Break: the written section is due at Friday at Spm, while the programming
portion is due Sunday night.

e ShortLab will be released on Friday.

45

46 RECITATION 9. GRAPH SEARCH: BFS AND DFS

9.2 DFS Trees and Numberings

Task 9.1. Starting at vertex 1, execute DFS on the following graph, visiting vertices in
increasing order. Trace the process by doing each of the following.

1. Draw the resulting DFS tree. Draw tree edges as solid lines, and include non tree
edges in your drawing as dashed lines.

2. Classify each non tree edge as one of forward, back, or cross.

3. Label each vertex with its discovery and finish times.

Task 9.2. Suppose DFS is run on a directed graph, and consider some edge (x,y).
Using the discovery and finish times of x and vy, attempt to classify this edge as one of
tree, forward, back, or cross.

Built: March 14, 2016

9.2. DFS TREES AND NUMBERINGS

9.2.1 Higher-Order DFS

Recall the following code from the textbook:

Algorithm 9.3. Directed, generalized DF'S.

1 directedDFS (revisit,discover, finish) (G,%y,s) =

2 let

3 DFS p (X,%),v) =

4 if (ve X) then (X, revisit (X,v,p)) else
5 let

6 Y = discover (%,v,p)

7 X' = XU{v}

8 (X",%2") = iterate (DFS v) (X',¥') (NZ(v))
9 ¥ = finish (¥,%",v,p)

10 in

11 (X",E”/)

12 end

13 in

14 DFS s (({},%0),9)

15 end

Task 9.4. Define >y, revisit, discover, and finish to calculate DFS number-
ings.

Task 9.5. Modify the given generalized DFS code to work with undirected graphs.

(Hint: We only want to traverse each edge once! Try implementing
undirected cycle detection with the above algorithm and see where it fails.)

Built: March 14, 2016

48 RECITATION 9. GRAPH SEARCH: BFS AND DFS

9.3 BFS

9.3.1 An Example

Task 9.6. Run BF'S on the example graph above, starting at vertex 1. Draw the resulting
BFS tree. Draw tree edges as solid lines and non-tree edges as dashed lines.

Built: March 14, 2016

9.3. BFS 49

9.3.2 Implementation

Consider the following code, which computes the BFS tree of an enumerated graph represented
by an adjacency sequence. For brevity, we’ll write NONE as[|and (SOME x) as|[z].

Algorithm 9.7. Computing BFS trees on adjacency sequences.

1 fun BFS (G,s) =

2 let

3 fun BFs’ (X;, F;) =

4 if |F;| =0 then STSeqg.toSeg X, else

5 let

6 val N; =

7 Seq.flatten ({(u,[v]):u €G] |X;ul=[]):veF)
8 val X;;; = STSeqg.inject (X;,N;)

9 val Fi+1 = <u 3 (u, ’U) € N; ’ Xi+1[u] = >
10 in

11 BFE'S’ (XiJrl/F/L'Jrl)

12 end

13

14 val init = STSeq.fromSeq ([]:0<i<|G|)
15 val Xg = STSeq.update (init, (s,[s]))

16 val Fy = (s)

17 in

18 BE'S’ (Xo,F(])

19 end

Task 9.8. Execute this code on the example graph given in the first section, starting with
vertex 1 as the source. Trace the process by writing down the values X;, F;, and N; for
1=0,1,2,3.

Task 9.9. Analyze the work and span of this implementation in terms of n (the number
of vertices), m (the number of edges), and d (the diameter of the graph).

Built: March 14, 2016

50 RECITATION 9. GRAPH SEARCH: BFS AND DFS

Built: March 14, 2016

	Graph Search: BFS and DFS
	Announcements
	DFS Trees and Numberings
	Higher-Order DFS

	BFS
	An Example
	Implementation

