Recitation 7

Combining BSTs

7.1 Announcements

- *FingerLab* has been released, and is due Friday afternoon. It’s worth 125 points.
- *RangeLab* will be released on Friday.
7.2 Generalized Combination

In lecture, we discussed \texttt{union}, and argued that it has $O\left(m \log \left(\frac{n}{m} + 1 \right) \right)$ work and $O(\log(n) \log(m))$ span. The latter bound can be improved to $O(\log n + \log m)$ using \texttt{futures}1, but that is outside the scope of this course.

What about the functions \texttt{intersection} and \texttt{difference}? These can be implemented in a similar fashion as \texttt{union}, and as such have the same cost bounds. In this recitation, we’ll establish this more concretely.

Task 7.1. Implement all three functions \texttt{union}, \texttt{intersection}, and \texttt{difference} in terms of a single helper function \texttt{combine} which has $O\left(m \log \left(\frac{n}{m} + 1 \right) \right)$ work and $O(\log(n) \log(m))$ span for BSTs of size n and m, $n \geq m$. Conclude that all three of these functions have the same cost bounds.

Task 7.2. Consider a function \texttt{symdiff} where \texttt{(symdiff (A, B))} returns a BST containing all keys which are either in A or B, but not both. Implement \texttt{symdiff} in terms of \texttt{combine}.

1http://dl.acm.org/citation.cfm?id=258517

Built: February 22, 2016