
Recitation 12

Dynamic Programming

12.1 Announcements

• Midterm 2 is on Friday.

65

66 RECITATION 12. DYNAMIC PROGRAMMING

12.2 Can We Solve SSSP With Dynamic Programming?

Task 12.1. Let δ(v, k) be the shortest path distance between the source and v using at
most k edges. For the example graph shown, fill in the table below with values δ(v, k)
using 0 as the source. If a vertex v is unreachable from the source using at most k edges,
then write δ(v, k) =∞.

0

1

2

3

1

8

4

1

7

v
0 1 2 3

k

0 0 ∞ ∞ ∞
1 0 8 1 ∞
2 0 5 1 8
3 0 5 1 6

Task 12.2. What are the values δ(v, 0) for every v?

If v is the source, then 0. Otherwise,∞, because we aren’t allowed to use any edges!

Task 12.3. Write δ(v, k) in terms of δ(·, k − 1). (Intuition: if we know shortest path
distances using at most k − 1 edges, can we easily calculate all shortest path distances
which use at most k edges? We only need to extend each shortest path by one edge.)

We’re given some specific v and k. Consider all of v’s in-neighbors, that is, vertices u for
which there is an arc (u, v). For each one of these, we know δ(u, k − 1). Therefore the values
δ(u, k − 1) + w(u, v) are possible distances to v which use at most k edges. The best of these
is simply the minimum. Let’s call this b(v, k), for the “best incoming”:

b(v, k) = min
u:(u,v)∈E

{
δ(u, k − 1) + w(u, v)

}
.

Now, is it correct to say that δ(v, k) = b(v, k)? What if δ(v, k − 1) is smaller? This value is the
length of a path of at most k − 1 edges, so we may need to reuse it when considering paths of
at most k edges. This yields the following definition for δ(v, k).

δ(v, k) = min
(
δ(v, k − 1), b(v, k)

)
= min

(
δ(v, k − 1), min

u:(u,v)∈E

{
δ(u, k − 1) + w(u, v)

})
.

Built: April 4, 2016

12.2. CAN WE SOLVE SSSP WITH DYNAMIC PROGRAMMING? 67

Task 12.4. Assuming the graph contains no negative cycles, prove the following state-
ment:

For each vertex, there exists a shortest path to it from the source using at
most |V | − 1 edges.

What does this statement tell us about using δ(v, k) to solve the SSSP problem?

Consider a shortest path to some vertex v. If this path contains at least |V | edges, then one
vertex on the path must be repeated (pigeonhole), and therefore the path contains a cycle. The
total weight of this cycle cannot be strictly positive, since then we could remove the cycle to
obtain a shorter path. Thus this cycle must have a total weight of 0. We can remove the cycle
to obtain a path of fewer edges, but same total weight. Repeat as necessary to obtain a shortest
path to each vertex which uses at most |V | − 1 edges.

Because of this, we can solve SSSP by calculating δ
(
v, |V | − 1

)
for each vertex v.

Task 12.5. Using what’s been established above, write a top-down dynamic program-
ming solution to the SSSP problem. Note that your result will essentially be a top-down
version of the well-known Bellman-Ford algorithm.

Algorithm 12.6. Top-down Bellman-Ford

1 fun TopDownBellmanFord (G = (V,E), s) =
2 let
3 % Subproblem: the shortest distance from s to v using k or fewer hops
4 fun δ(v, k) =
5 if v = s then 0
6 else if k = 0 then ∞
7 else min

(
δ(v, k − 1),minu:(u,v)∈E

{
δ(u, k − 1) + w(u, v)

})
8 in
9 {v 7→ δ(v, |V | − 1) : v ∈ V }

10 end

12.2.1 Cost Analysis

Task 12.7. Describe the DAG of dependencies between subproblems δ(v, k); i.e., each
vertex is a pair (v, k), and there is an arc from (v′, k′) to (v, k) if we need to know the
value δ(v′, k′) in order to calculate δ(v, k).

Draw the dependency DAG for the example graph given above.

Built: April 4, 2016

68 RECITATION 12. DYNAMIC PROGRAMMING

Except for v = s, each δ(v, k) is dependent upon δ(v, k − 1) as well as δ(u, k − 1) for every u
which is an in-neighbor of v.

δ(0, 0) δ(1, 0) δ(2, 0) δ(3, 0)

δ(0, 1) δ(1, 1) δ(2, 1) δ(3, 1)

δ(0, 2) δ(1, 2) δ(2, 2) δ(3, 2)

δ(0, 3) δ(1, 3) δ(2, 3) δ(3, 3)

Task 12.8. Identify a bottom-up ordering of the Bellman-Ford DAG which maximizes
parallelism while respecting subproblem dependencies. Use this bottom-up ordering to
determine the work and span of Bellman-Ford in terms of n, the number of vertices, and
m, the number of edges. You may assume constant-time access to subproblems you have
already computed.

We can solve the subproblems in increasing order of k. For each value of k, we can solve a
whole “row” in parallel: round i of the algorithm computes {v 7→ δ(v, i) : v ∈ V } in parallel.

What are the work and span of calculating a single δ(v, k)? Notice that we have to take the
minimum over items in {u|(u, v) ∈ E}. Let’s write deg−(v) for the size of this set; i.e., the
in-degree of v. Then calculating δ(v, k) has O(deg−(v)) work and O(log(deg−(v))) span.

Each round is parallel, hence the span of any particular round is

O
(
max

v
log(deg−(v))

)
= O(log n).

There are n rounds, and so the span is O(n log n).

The work of any particular round is O(m): for each vertex we pay proportional to the
indegree of that vertex, and the sum of indegrees is equal to m.

O

(∑
v

deg−(v)

)
= O(m).

Once again, there are n rounds, so the total work is O(nm).

Built: April 4, 2016

12.2. CAN WE SOLVE SSSP WITH DYNAMIC PROGRAMMING? 69

12.2.2 Is Bellman-Ford A Useful Algorithm?

Task 12.9. Recall that the work bound of Dijkstra’s algorithm as presented in class was
O(m log n). For certain priority queue implementations, this can be reduced even to
O(m + n log n). Bellman-Ford is clearly much slower. In what situations might you
want to use Bellman-Ford instead of Dijkstra’s algorithm?

Dijkstra’s algorithm may fail on graphs which contain negative edges. As presented above,
Bellman-Ford works for any graph–even those with negative edges–which does not contain a
negative cycle (which is fine, because SSSP isn’t defined for negative cycles).

Task 12.10. Describe a simple modification to Bellman-Ford’s algorithm which can be
used to detect the presence of a negative cycle.

Notice that, for every vertex v on the negative cycle, even as k increases past n, δ(v, k) will
continue to decrease. Thus, if there exists a v such that δ(v, n) < δ(v, n − 1), then the graph
contains a negative cycle.

Task 12.11. Describe an optimization for Bellman-Ford which (assuming there are no
negative cycles) causes it terminate after ` rounds, where ` is the maximum number of
edges used in any of the shortest paths.

Notice that for every v, δ(v, ` + 1) = δ(v, `). Thus we can terminate as soon as the δ’s stop
changing.

Built: April 4, 2016

70 RECITATION 12. DYNAMIC PROGRAMMING

.

Built: April 4, 2016

	Dynamic Programming
	Announcements
	Can We Solve SSSP With Dynamic Programming?
	Cost Analysis
	Is Bellman-Ford A Useful Algorithm?

