Recitation 12

Dynamic Programming

12.1 Announcements

- Midterm 2 is on Friday.

12.2 Can We Solve SSSP With Dynamic Programming?

Task 12.1. Let $\delta(v, k)$ be the shortest path distance between the source and v using at most k edges. For the example graph shown, fill in the table below with values $\delta(v, k)$ using 0 as the source. If a vertex v is unreachable from the source using at most k edges, then write $\delta(v, k)=\infty$.

	v			
	0	1	2	3
0	0	∞	∞	∞
, 1	0	8	1	∞
2	0	5	1	8
3	0	5	1	6

Task 12.2. What are the values $\delta(v, 0)$ for every v ?

If v is the source, then 0 . Otherwise, ∞, because we aren't allowed to use any edges!

Task 12.3. Write $\delta(v, k)$ in terms of $\delta(\cdot, k-1)$. (Intuition: if we know shortest path distances using at most $k-1$ edges, can we easily calculate all shortest path distances which use at most k edges? We only need to extend each shortest path by one edge.)

We're given some specific v and k. Consider all of v 's in-neighbors, that is, vertices u for which there is an $\operatorname{arc}(u, v)$. For each one of these, we know $\delta(u, k-1)$. Therefore the values $\delta(u, k-1)+w(u, v)$ are possible distances to v which use at most k edges. The best of these is simply the minimum. Let's call this $b(v, k)$, for the "best incoming":

$$
b(v, k)=\min _{u:(u, v) \in E}\{\delta(u, k-1)+w(u, v)\} .
$$

Now, is it correct to say that $\delta(v, k)=b(v, k)$? What if $\delta(v, k-1)$ is smaller? This value is the length of a path of at most $k-1$ edges, so we may need to reuse it when considering paths of at most k edges. This yields the following definition for $\delta(v, k)$.

$$
\begin{aligned}
\delta(v, k) & =\min (\delta(v, k-1), b(v, k)) \\
& =\min \left(\delta(v, k-1), \min _{u:(u, v) \in E}\{\delta(u, k-1)+w(u, v)\}\right) .
\end{aligned}
$$

Task 12.4. Assuming the graph contains no negative cycles, prove the following statement:

For each vertex, there exists a shortest path to it from the source using at most $|V|-1$ edges.

What does this statement tell us about using $\delta(v, k)$ to solve the SSSP problem?

Consider a shortest path to some vertex v. If this path contains at least $|V|$ edges, then one vertex on the path must be repeated (pigeonhole), and therefore the path contains a cycle. The total weight of this cycle cannot be strictly positive, since then we could remove the cycle to obtain a shorter path. Thus this cycle must have a total weight of 0 . We can remove the cycle to obtain a path of fewer edges, but same total weight. Repeat as necessary to obtain a shortest path to each vertex which uses at most $|V|-1$ edges.

Because of this, we can solve SSSP by calculating $\delta(v,|V|-1)$ for each vertex v.

Task 12.5. Using what's been established above, write a top-down dynamic programming solution to the SSSP problem. Note that your result will essentially be a top-down version of the well-known Bellman-Ford algorithm.

Algorithm 12.6. Top-down Bellman-Ford

```
fun TopDownBellmanFord (G=(V,E),s) =
    let
            % Subproblem: the shortest distance from s to v using k or fewer hops
            fun }\delta(v,k)
            if v=s then 0
            else if }k=0\mathrm{ then }
            else min}(\delta(v,k-1),\mp@subsup{\operatorname{min}}{u:(u,v)\inE}{}{\delta(u,k-1)+w(u,v)}
        in
            {v\mapsto\delta(v,|V|-1):v\inV}
    end
```


12.2.1 Cost Analysis

Task 12.7. Describe the DAG of dependencies between subproblems $\delta(v, k)$; i.e., each vertex is a pair (v, k), and there is an arc from $\left(v^{\prime}, k^{\prime}\right)$ to (v, k) if we need to know the value $\delta\left(v^{\prime}, k^{\prime}\right)$ in order to calculate $\delta(v, k)$.

Draw the dependency DAG for the example graph given above.

Built: April 4, 2016

Except for $v=s$, each $\delta(v, k)$ is dependent upon $\delta(v, k-1)$ as well as $\delta(u, k-1)$ for every u which is an in-neighbor of v.

Task 12.8. Identify a bottom-up ordering of the Bellman-Ford DAG which maximizes parallelism while respecting subproblem dependencies. Use this bottom-up ordering to determine the work and span of Bellman-Ford in terms of n, the number of vertices, and m, the number of edges. You may assume constant-time access to subproblems you have already computed.

We can solve the subproblems in increasing order of k. For each value of k, we can solve a whole "row" in parallel: round i of the algorithm computes $\{v \mapsto \delta(v, i): v \in V\}$ in parallel.

What are the work and span of calculating a single $\delta(v, k)$? Notice that we have to take the minimum over items in $\{u \mid(u, v) \in E\}$. Let's write $\operatorname{deg}^{-}(v)$ for the size of this set; i.e., the in-degree of v. Then calculating $\delta(v, k)$ has $O\left(\operatorname{deg}^{-}(v)\right)$ work and $O\left(\log \left(\operatorname{deg}^{-}(v)\right)\right)$ span.

Each round is parallel, hence the span of any particular round is

$$
O\left(\max _{v} \log \left(\operatorname{deg}^{-}(v)\right)\right)=O(\log n)
$$

There are n rounds, and so the span is $O(n \log n)$.
The work of any particular round is $O(m)$: for each vertex we pay proportional to the indegree of that vertex, and the sum of indegrees is equal to m.

$$
O\left(\sum_{v} \operatorname{deg}^{-}(v)\right)=O(m)
$$

Once again, there are n rounds, so the total work is $O(n m)$.
Built: April 4, 2016

12.2.2 Is Bellman-Ford A Useful Algorithm?

Task 12.9. Recall that the work bound of Dijkstra's algorithm as presented in class was $O(m \log n)$. For certain priority queue implementations, this can be reduced even to $O(m+n \log n)$. Bellman-Ford is clearly much slower. In what situations might you want to use Bellman-Ford instead of Dijkstra's algorithm?

Dijkstra's algorithm may fail on graphs which contain negative edges. As presented above, Bellman-Ford works for any graph-even those with negative edges-which does not contain a negative cycle (which is fine, because SSSP isn't defined for negative cycles).

Task 12.10. Describe a simple modification to Bellman-Ford's algorithm which can be used to detect the presence of a negative cycle.

Notice that, for every vertex v on the negative cycle, even as k increases past $n, \delta(v, k)$ will continue to decrease. Thus, if there exists a v such that $\delta(v, n)<\delta(v, n-1)$, then the graph contains a negative cycle.

Task 12.11. Describe an optimization for Bellman-Ford which (assuming there are no negative cycles) causes it terminate after ℓ rounds, where ℓ is the maximum number of edges used in any of the shortest paths.

Notice that for every $v, \delta(v, \ell+1)=\delta(v, \ell)$. Thus we can terminate as soon as the δ 's stop changing.

